MSc Data Science
DURATION
1 up to 2 Years
LANGUAGES
English
PACE
Full time, Part time
APPLICATION DEADLINE
Request application deadline
EARLIEST START DATE
Request earliest startdate
TUITION FEES
GBP 13,950 *
STUDY FORMAT
On-Campus
* international students full time, part time £1160 per 15 credits / UK students full time £9450, part time £790 per 15 credits / EU students full time £13950, part time £1160 per 15 credits
Scholarships
Explore scholarship opportunities to help fund your studies
Introduction
"Due to the ongoing Coronavirus pandemic, examinations may be replaced by an alternative form of assessment during the academic year 2021/2022. Please refer to the Programme Specification on these pages for further details."
Why choose Herts?
- Teaching Excellence: You will be taught by internationally recognised research staff with expertise across mathematics, statistics, astrophysics, medical physics, and computer science (see key staff).
- Work-Placement Opportunities: You have an option to take a one-year paid industry placement. Students have had placements with organisations including NatWest, Sparta Global, and Sky.
- Industry Connections: Benefit from our strong links with the computing industry. We work with employers such as Microsoft and Hewlett Packard for students to engage in careers fairs and industry sessions.
About the course
Data is the currency of all but the most theoretically-based scientific research, and it also underpins our modern world, from the flow of data across international banking networks and the spread of memes across social networks to the complex models of weather forecasting. The constant generation of data from our digital society feeds into our everyday lives, affecting how we receive healthcare to influencing our shopping habits. Order to handle, make sense of, and exploit large volumes of available data requires highly skilled human insight, analysis and visualisation. The professionals working in this field are called ‘data scientists’, who blend advanced mathematical and statistical skills with programming, database design, machine learning, modelling, simulation and innovative data visualisation. These professionals are in high demand in both the public and private sectors in the UK and worldwide. This programme aims and learning outcomes are built around two guiding principles:
- To provide a comprehensive understanding of the fundamental mathematical and statistical concepts underlying data science, and how they are implemented in algorithms and machine learning techniques to solve a variety of data processing and analysis problems.
- To provide training in the practical skills relevant to data science, central of which is the ability to write clean and efficient code in industry-recognised languages (in particular, Python and R), but also includes data handling, manipulation, mining and visualisation techniques.
Why choose this course?
- This programme is distinctive in its philosophy of widening participation and provides a route to gain skills and training in data science to those from a background not traditionally associated with the S.T.E.M. themes of mathematics, statistics and programming. The programme is designed to be appealing to a broad range of students who are seeking training or up-skilling in data science.
- You will benefit from the expertise of astrophysicists, physicists, mathematicians and computer scientists with international research profiles. Their day-to-day research involves the application of and in some cases the development of new, data science skills, from fundamental statistical analyses, the use of distributed high-performance computing, and research into novel artificial intelligence algorithms.
- We aim to make the programme distinctive in terms of the mixture of hard and soft skills, and the close personal relationship that we are developing with employers, which will feed into the programme through continuous assessment of the latest industry-relevant tools, which are continually evolving as new technology and software become available.
- You will experience a multidisciplinary approach to data science by experiencing challenges in computer science, creative arts, medical and business environments.
- You will have the opportunity to attend a wide range of research-focused seminars to excite and spark your intellectual curiosity.
Student experience
At the University of Hertfordshire, we want to make sure your time studying with us is as stress-free and rewarding as possible. We offer a range of support services including; student wellbeing, academic support, accommodation, and childcare to ensure that you make the most of your time at Herts and can focus on studying and having fun.
Additional information
- Sandwich placement or study abroad year: n/a
- Applications open to international and EU students: Yes
Gallery
Admissions
Scholarships and Funding
Curriculum
What will I study?
The curriculum is structured to ensure are exposed to the fundamental mathematical and statistical principles underpinning all data science. These themes will always be relevant in what is a constantly evolving field. Theoretical work will be reinforced with practical application through hands-on laboratories and workshops, to enable you to understand and appreciate how fundamental principles are reflected in a broad range of data processing and analyses. You will become proficient in key practical skills (e.g. use of pandas for working with data structures within Python, and ggplot2 for visualisation in Python and R) using ‘real-world’ data where possible. In some cases, this data can be sourced from active research projects being conducted by members of the teaching staff.
The programme focuses on providing ‘end-to-end' training so that you become competent not only in the processing and analysis of data but also in manipulating and preparing data from a raw state as well as interpreting results and effectively communicating findings to others. This will enable you to be prepared for real-world challenges and application and will help you to develop independence in your analytical and critical thinking. This will be nurtured in laboratory-based practical sessions so you can put your theories into practice.
Level 6
- Multivariate Statistics II 15 Credits II Optional
- Linear Modelling II 15 Credits II Optional
Level 7
- Neural Networks and Machine Learning II 30 Credits II Compulsory
- Foundations of Data Science II 30 Credits II Compulsory
- Applied Data Science 2 II 15 Credits II Compulsory
- Data Science Project II 60 Credits II Compulsory
- Data Science Core Skills Bootcamp II 0 Credits II Optional
- Data Handling and Visualisation II 15 Credits II Optional
- Data Mining and Discovery II 15 Credits II Optional
Program Tuition Fee
Career Opportunities
Upon completion of the programme, you will be able to demonstrate (and apply) an understanding of a wide range of theoretical and practical skills enabling you to enter a variety of disciplines and industries. You will be able to:
- Understand and be able to critically assess the various strengths and weaknesses inherent to different data science methodologies.
- Design creative strategies and solutions to tackle unfamiliar data science problems and critically assess outputs and results through appropriate statistically robust validation and other performance assessment techniques.
- Effectively communicate problems, methods, results and conclusions through oral and written presentation to both expert and non-expert audiences.
- Have an appreciation of both the underlying research behind data science techniques (e.g. cutting-edge algorithms and computational techniques) and their relevance and application across a broad range of disciplines.