MSc Aerospace Engineering
Stockholm, Sweden
DURATION
2 Years
LANGUAGES
English
PACE
Full time
APPLICATION DEADLINE
Request application deadline
EARLIEST START DATE
Aug 2025
TUITION FEES
SEK 342,000 / per year *
STUDY FORMAT
On-Campus
* non-EU/EEA/Swiss is 342,000 SEK.
Introduction
The master's programme in Aerospace Engineering fosters skilled engineers for careers in the international aerospace sector and related fields. The programme offers specialisation in Aeronautics, Space, Lightweight Structures and Systems Engineering. Graduates have a solid theoretical foundation in aerospace modelling, analysis and design, as well as teamwork skills and a general ability to approach and solve complex engineering tasks.
Aerospace Engineering at KTH
The master's programme in Aerospace Engineering offers you a broad, challenging and internationally acknowledged education. It provides skills in aerospace modelling and design, solving complex engineering tasks, collaboration with others in project work, and communicating results and findings professionally. The programme at KTH is highly international, with contacts and students from all over the world. The astronaut and KTH alumnus Christer Fuglesang is the chairman of the Progamme's Advisory Board.
The master's programme in Aerospace Engineering is a two-year programme (120 ECTS credits) given in English. Graduates are awarded the degree of Master of Science. The programme is given mainly at KTH Campus in Stockholm by the School of Engineering Sciences.
During the autumn semester of the first year of study, all students take one fundamental mandatory course in each of four tracks: Aeronautics, Space, Lightweight Structures and Systems Engineering. In addition, one course is mandatory for all master's students at KTH: Theory and Methodology of Science. We aim to provide you with the opportunity to experience various aspects of aerospace engineering and make an informed decision when choosing your specialisation track.
Towards the end of the autumn semester, you choose one of the four available tracks. Each track has several mandatory courses worth about 25 ECTS credits. The rest of the courses are elective. We provide a set of recommended courses for your track, but you can choose elective courses entirely based on your interests and future sought careers. There are also many possibilities to combine courses between the tracks. The specialisation tracks start during the spring semester of the first year of study.
During the spring semester of the second year you will conduct a five-month long degree project. You can conduct the project at a company, an institute or a university, in Sweden or abroad. It allows you to work on open-ended, complex engineering problems, either in an industrial or in a research-oriented setting. The degree project is presented in a written thesis and discussed at an open seminar.
Aeronautics
The track focuses on modelling, analysis and design of aircraft. You will learn how to estimate the performance of an aircraft, compute its aerodynamic properties, simulate its motion in flight, and analyse how the aerodynamic and structural properties influence stability and control. The track is characterised by a strong interaction between theory and practice. You will, for example, plan, perform and evaluate a wind tunnel test during your studies.
Lightweight Structures
The Lightweight Structures track focuses on the analysis and development of lightweight materials and structures for more efficient mechanical solutions and products. Functionality per weight is a simple but highly relevant measure of efficiency since reduced weight can enable improved performance, more cost-effective production and reduce material consumption and environmental impact. The track mainly emphasises fibre composites, including non-metallic materials and sandwich structures, since such materials are often used in applications with extreme requirements. You will develop knowledge and skills in analysis, design, optimisation, materials, manufacturing and testing of lightweight materials and structures.
Space
Space technology plays a crucial role in modern society, enabling telecommunication and navigation services, weather forecasting, Earth observation and much more. The space track focuses on applications related to rocket and satellite technology, with particular emphasis on propulsion, trajectory analysis, spacecraft dynamics and systems perspective. The space environment and its impact on the design and instrumentation of satellites is another central theme in the education. Courses in human spacecraft, space research and space application provide a broader perspective of the field.
Systems Engineering
Aircraft, trains and satellites are examples of complex systems that have to be designed with reliable control systems and efficient maintenance plans to be competitive in today's global market. Upon graduation, you will be able to develop mathematical models of systems to analyse and optimise their performance. Control theory has a crucial role in the design of space missions and the robustness and performance of modern aircraft.
Curriculum
Year 1
Theory and Methodology of Natural and Technological Science: the course SD2900 Fundamentals of Spaceflight, 7,5 credits, contents 3 credits of applied methodological theory – and with the course AK2030 Theory and Methodology of Science (Natural and Technological Science) 4,5 credits - the courses together content 7,5 credits of theory and methodology of natural and technological science.
The course AK2030 Theory and Methodology of Science (Natural and Technological Science) 4,5 credits, is given in several study periods during the academic year. If you want to read the course another study period - please ask the Course Responsible if it is possible.
Mandatory courses for all tracks
- Theory and Methodology of Science (Natural and Technological Science) (AK2030) 4.5 credits
- Lightweight Structures and FEM (SD2411) 8.0 credits
- Fundamentals of Flight (SD2601) 7.5 credits
- Fundamentals of Spaceflight (SD2900) 7.5 credits
- Systems Engineering (SF2863) 7.5 credits
Program Outcome
Sustainable development
Graduates from KTH have the knowledge and tools to move society in a more sustainable direction, as sustainable development is an integral part of all programmes at KTH. The three key sustainable development goals addressed by the master's programme in Aerospace Engineering are:
- 7 Affordable and Clean Energy
- 9 Industry, Innovation, and Infrastructure
- 11 Sustainable Cities and Communities
The aerospace sector has always been driven by high aerodynamic efficiency, low weight and state-of-the-art usage of new materials, and improvements in the efficiency of propulsion systems. Considerable development work and efforts are continuously being performed, both in small details and at a systems level. For commercial aircraft, there has always been a strong emphasis on lowering fuel consumption and thereby emissions and release of CO2.
With increased travelling in recent years, the aerospace sector has become the focus of many debates about CO2 emissions and air pollution, with considerable positive progress being made in applying fossil-free fuels and initiatives in electrified flight and carbon-free propulsion. These are exciting times, with most people agreeing that flying as we know it today cannot increase without severe environmental implications. At the same time, there are no indications of our flying habits diminishing now or in the future. On the contrary, one of the more likely applications for electrified flight is for short-distance travel where we do not currently fly. The air-travel business and modern society thus face significant future challenges, making education in aerospace engineering more relevant and interesting than ever. Transitioning into sustainable flying is crucial for maintaining the current level of mobility in the world. As an aerospace engineer, you can contribute to global development in that direction.
Satellites are crucial for a sustainable world, but millions of non-operational satellites or parts of satellites are still flying in low Earth orbit. Because such "space junk" endangers operational satellites, active space debris removal missions are planned to prevent its uncontrolled growth. Liquid fuels for satellite propulsion have previously been highly toxic and expensive to handle safely. Now, the Swedish space industry has developed "green" fuels with performance characteristics similar to those of harmful fuels. Until recently, launch vehicles have mostly been expendable, but after the retirement of the space shuttle, new reusable launch vehicles have been developed by private space companies enabling cheaper access to space. The guidelines and rules on sustainable space activities are being updated to reduce risks and ensure access to space for future generations.
Sustainable development
Graduates from KTH have the knowledge and tools to move society in a more sustainable direction, as sustainable development is an integral part of all programmes at KTH. The three key sustainable development goals addressed by the master's programme in Aerospace Engineering are:
- 7 Affordable and Clean Energy
- 9 Industry, Innovation, and Infrastructure
- 11 Sustainable Cities and Communities
The aerospace sector has always been driven by high aerodynamic efficiency, low weight and state-of-the-art usage of new materials, and improvements in the efficiency of propulsion systems. Considerable development work and efforts are continuously being performed, both in small details and at a systems level. For commercial aircraft, there has always been a strong emphasis on lowering fuel consumption and thereby emissions and release of CO2.
With increased travelling in recent years, the aerospace sector has become the focus of many debates about CO2 emissions and air pollution, with considerable positive progress being made in applying fossil-free fuels and initiatives in electrified flight and carbon-free propulsion. These are exciting times, with most people agreeing that flying as we know it today cannot increase without severe environmental implications. At the same time, there are no indications of our flying habits diminishing now or in the future. On the contrary, one of the more likely applications for electrified flight is for short-distance travel where we do not currently fly. The air-travel business and modern society thus face significant future challenges, making education in aerospace engineering more relevant and interesting than ever. Transitioning into sustainable flying is crucial for maintaining the current level of mobility in the world. As an aerospace engineer, you can contribute to global development in that direction.
Satellites are crucial for a sustainable world, but millions of non-operational satellites or parts of satellites are still flying in low Earth orbit. Because such "space junk" endangers operational satellites, active space debris removal missions are planned to prevent its uncontrolled growth. Liquid fuels for satellite propulsion have previously been highly toxic and expensive to handle safely. Now, the Swedish space industry has developed "green" fuels with performance characteristics similar to those of harmful fuels. Until recently, launch vehicles have mostly been expendable, but after the retirement of the space shuttle, new reusable launch vehicles have been developed by private space companies enabling cheaper access to space. The guidelines and rules on sustainable space activities are being updated to reduce risks and ensure access to space for future generations.
As an aerospace engineer, you can become a scientist or a CEO, a stress analyst or a project manager, a technical support specialist, a salesperson or an astronaut, all depending on the opportunities that come about and the decisions you make.
Admissions
Scholarships and Funding
KTH offers four different scholarship opportunities for master's studies. The KTH Scholarship covers the tuition fee of a one or two year master’s programme. The KTH One-Year Scholarship is aimed at current KTH master's programme students and covers the tuition fee of the second year of studies. The KTH Joint Programme Scholarship is aimed at students in certain joint programmes and covers the tuition fee for the study period spent at KTH. The KTH India Scholarship is aimed specifically at students from India.
- KTH Scholarship
- KTH One-Year Scholarship
- KTH Joint Programme Scholarship
- KTH India Scholarship
Swedish Institute
The Swedish Institute (SI) offers a number of scholarships for students from targeted countries coming to Sweden.
KTH associated scholarship organisations
KTH cooperates with the following organisations providing scholarship opportunities for prospective KTH students.
- COLFUTURO (Programa Crédito Beca) for students from Colombia
- LPDP (Indonesia Endowment Fund for Education) for students from Indonesia
- FUNED for students from Mexico
Scholarship portals
IEFA database
The IEFA database offer a comprehensive scholarships search, grant listing and international student loan programmes.
Studyportals
The Studyportals scholarship database lists over 1,000 scholarship and grants for students worldwide applying for studies in the EU.
Scholars4dev
Scholarships for Development is a database of scholarships open to students from developing countries.
WeMakeScholars
WeMakeScholars helps students from India secure education loans from banks and NBFCs. They also lists more than 26,000 international scholarships from different trusts, foundations and govt. bodies.
Deferment of student loans in the United States
KTH is an accredited institution at the US Department of Education and holds a Title IV 'Deferment Only' status (OPE ID 03274300). US students may defer payments on existing federal student loan accounts while enrolled in a master’s programme at KTH. The 'Deferment Only' status does not allow students to take out federal student loans for enrolment at KTH. However, the accreditation facilitates grant and loan opportunities for US students as many private student loan institutions in the US use this designation as a requirement to grant new loans. Students who wish to defer payments must contact their lending institution in the US.
Several scholarship options are available. Please check the institute website for more information.
Program Tuition Fee
Gallery
Career Opportunities
The employment market for aerospace engineers in Europe is strong and will likely remain so for the foreseeable future. Airbus is the main European aerospace company with more than 130,000 employees, but a large share of the work is performed by various subcontractors all over Europe and worldwide. Students taking the Aeronautics track are particularly attractive to companies working in aerodynamics and aeronautics.
The space sector is dynamic and evolving, with major projects such as navigation satellite systems and challenging scientific missions. The European space industry employs about 40,000 people. As a space engineer, you can, for example, work with the development, testing and operation of satellites, launchers, sounding rockets or other space systems.
Students taking the Lightweight Structures track become well prepared for a future in the development of new products or applications where more sustainable air transportation likely will be a key societal issue for the coming decades. There is a constant need for skilled structural engineers within aerospace, naval and automotive engineering, as well as in other businesses working with more niched manufacturing or innovative design solutions, making the employment market huge.
Today, Systems Engineering is increasingly important in areas like the aerospace sector, the automotive industry and communications systems. A systems engineer could work with the design of the control of the damping in an aircraft’s landing gear, how to find the least costly spare parts management system for an air fleet, or in analysing the reliability of a radar system. A systems engineer is attractive to a large number of industries in various fields.
A master’s degree in the aerospace field from KTH is a mark of quality and opens a wide range of career opportunities in industry and research, as well as within areas outside the aerospace sector.
After graduation
As an aerospace engineer, you can become a scientist or a CEO, a stress analyst or a project manager, a technical support specialist, a salesperson or an astronaut, all depending on the opportunities that come about and the decisions you make.
Student Testimonials
Program Admission Requirements
Show your commitment and readiness for Grad school by taking the GRE - the most broadly accepted exam for graduate programs internationally.