Master's Degree in Life Sciences in Maryland in USA

Compare Masters Programs in Life Sciences 2017 in Maryland in USA

Life Sciences

A master's degree is a postgraduate academic degree. One must already have an undergraduate degree to apply for a master's program. Most master's degree program would require students to complete a master's thesis or research paper.

In regards to the study of biological & life sciences, students may focus on one aspect of natural science or study how they work together, such as the environment and human health or biology and geology.

Education in the United States is mainly provided by the public sector, with control and funding coming from three levels: state, local, and federal, in that order. The common requirements to study at a higher education level in United States will include your admissions essay (also known as the statement of purpose or personal statement), transcript of records, recommendation/reference letters, language tests

Maryland is a state of US and sharing borders with Virginia, West Virginia and District of Columbia. Many historic and highly ranked universities serve this state. There are a number of specialized training colleges which train the physicians, dentists, attorneys, engineers, social workers and pharmaceutics.

Request Information Master's Degrees in Life Sciences in Maryland in USA 2017

Read More

Master of Engineering Chemical and Biomolecular Engineering

University of Maryland, A. James Clark School of Engineering
Campus Full time Part time 1 - 5 years September 2017 USA College Park + 1 more

The Graduate Program in Chemical and Biomolecular Engineering offers research and education opportunities leading to the Master of Science and Doctor of Philosophy degrees. [+]

Masters in Life Sciences in Maryland in USA. The Graduate Program in Chemical and Biomolecular Engineering offers research and education opportunities leading to the Master of Science and Doctor of Philosophy degrees. The Department of Chemical and Biomolecular Engineering is well-equipped for graduate research in aerosol science and engineering, biochemical engineering, computational modeling, fluid mechanics and mixing, fuel cell technology, metabolic engineering and systems biology, nanoparticle technology, polymer processing and characterization, polymer reaction engineering, process control, thermodynamics and transport phenomena, and systems research. The Department maintains a distributed computing network consisting of research laboratories and a PC laboratory. Major research facilities including electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and NMR are coordinated through a variety of laboratories. General Requirements Before graduate courses in Chemical Engineering are attempted, the candidate must fulfill certain minimal course prerequisites either by previous experience or by taking selected undergraduate courses. These minimal prerequisites are descibed in the GPA and prerequisite policy page. Some of these prerequisites may be fulfilled by concurrent registration if necessary. No courses numbered below 400 may count towards the minimal 30 credits required for the degree. A maximum of 6 credits of 400 level courses may count towards the degree subject to prior approval by the Graduate Director. Graduate courses with an EMPM designation cannot be used to satisfy the minimum 30 hours without prior permission of the Graduate Director. All graduate students (full and part-time, on and off campus) are expected to attend all research seminars, i.e., those not... [-]

Master of Engineering in Bioengineering

University of Maryland, A. James Clark School of Engineering
Online & Campus Combined Full time September 2017 USA College Park

Master of Engineering in Bioengineering [+]

Admission Requirements: Full admission as a degree seeking student requires the following prerequisites: A bachelor's degree, GPA of 3.0 or better, in engineering or a related field; Biology, Chemistry, Physics, from an accredited institution. Courses in mathematics (Calculus I, II, III and Differential Equations) and Thermodynamics are required to be considered for admission. Non-engineering majors must have completed mathematics courses through Differential Equations. Applicants who do not have an adequate background in Thermodynamics (or Physical Chemistry) will be required to take ENPM 672, Fundamentals of Thermal Systems, in their first semester. Students who do not possess an engineering degree may also be required to take ENPM 672 in their first semester. Completed applications are reviewed and considered for admission on a case-by-case basis. [-]