Masters Degree in Automotive Engineering in USA

Search Masters Programs in Automotive Engineering in USA 2017

Automotive Engineering

In order to successfully obtain a Masters qualification, you will need to obtain a number of credits by passing individual modules. Most taught Masters will have a number of core modules which you must take and pass in order to obtain the qualification. The assessment of research Masters is almost always entirely by a single dissertation module or project.

Students in automotive engineering programs can prepare for a variety of different careers in the field. Many program graduates find positions at various levels in production, post-production, industrial processing, automotive design and research and design.

The United States of America is a large country in North America, often referred to as the "USA", the "US", the "United States", "America", or simply "the States". American colleges are funded by "tuition" charged to the student, which is often quite expensive, very commonly reaching into the tens of thousands of dollars per year.

Top Master Programs in Automotive Engineering in USA 2017

Read More

Master of Engineering in Transportation Systems

University of Maryland, A. James Clark School of Engineering
Campus Full time September 2017 USA College Park

The 30-credit curriculum includes 10 three-credit courses. No research or thesis is required for the degree. Six core courses and four elective courses. [+]

Best Masters in Automotive Engineering in USA 2017. The 30-credit curriculum includes 10 three-credit courses. No research or thesis is required for the degree. Six core courses and four elective courses. Core ENCE670 Highway Traffic Characteristics and Measurements (3) Prerequisite: Permission of Instructor. The study of the fundamental traits and behavior patterns of road users and their vehicles in traffic. The basic characteristics of the pedestrian, the driver, the vehicle, traffic volume and speed, stream flow and intersection operation, parking, and accidents. ENCE672 Regional Transportation Planning (3) Prerequisite: Permission of Instructor. Factors involved and the components of the process for planning statewide and regional transportation systems, encompassing all modes. Transportation planning studies, statewide traffic models, investment models, programming and scheduling. ENCE673 Urban Transportation (3) Prerequisite: Permission of Instructor. The contempory methodology of urban transportation planning. The urban transportation planning process, interdependence between the urban transportation system and the activity system, urban travel demand models, evaluation of urban transportation alternatives and their implementation. ENCE677 OR Models for Transportation Systems Analysis (3) Prerequisite: Permission of Instructor. Fundamental skills and concepts of the quantitative techniques of operations research including: mathematical modeling, linear programming, integer programming, network optimization (shortest paths, minimum spanning trees, minimum cost network flows, maximum flows), heuristics, and basics of probabilistic modeling. Emphasis on the application of these techniques to problems arising in transportation. ENCE6881 Discrete Choice Analysis (3) Prerequisite: Permission of Instructor. Methods and statistics of model estimation; maximum-likelihood estimation; individual choice theory; binary choice models; multi-dimensional choice models; sampling theory and sample design; aggregate prediction with choice models; joint stated preference and revealed preference modeling, and longitudinal choice analysis; review of state-of-the-art and future directions. ENCE688T Transportation Network Algorithms and Implementations (3) Prerequisite: Permission of Instructor. This course will focus on network optimization algorithms for transportation and logistics systems. The application of these techniques to the determination of optimal routes and tours for various transportation and logistics applications will be stressed. In addition to introducing a wide variety of network-related problems and existing techniques for solving a number of these problems, one of the goals of the course is to help the class participants to develop skills in creating and evaluating new algorithms and heuristics. Elective ENCE627 Project Risk Management (3) Prerequisite: Permission of Instructor. Introduction to identifying, analyzing, assessing, and managing risks inherent to engineering projects. Includes: probability modeling, choice and value theory, schedule and cost risk, risk mitigation and transfer, and contract considerations of project risk. Examples are drawn from construction, software development, systems integration, and other large engineering projects; and cover probability basics, subjective probability, statistical data analysis, introduction to decision theory, Monte Carlo simulation, value of information, and risk-based decision making. ENCE666 Cost Engineering and Control (3) Prerequisite: Permission of Instructor. Analytic techniques to estimate and control project costs, including site investigation, quantity takeoff, work analysis and bid preparation. Systematic cost control as related to job production and historical data. ENCE667 Project Performance Measurement (3) Prerequisite: Permission of Instructor. Examination of various techniques and models used to measure the performance of projects. Topics will include: Critical Path Method (CPM), Program Evaluation Review Technique (PERT), Gantt charts, project crashing, resource management, capital allocation, forecasting, hypothesis testing, regression analysis, learning curve analysis, goal programming, Monte Carlo simulation, the Analytic Hierarchy Process (AHP), Pareto optimality and tradeoff curves as well as basics in linear programming and uncertainity modeling. ENCE674 Urban Transit Planning and Rail Transportation Engineering (3) Prerequisite: Permission of Instructor. Basic engineering components of conventional and high speed railroads and of air cushion and other high speed new technology. The study of urban rail and bus transit. The characteristics of the vehicle, the supporting way, and the terminal requirements will be evaluated with respect to system performance, capacity, cost, and level of service. ENCE688 Applications of OR in Transportation Systems Management (3) Prerequisite: Permission of Instructor. This course covers the application of mathematical optimization in transportation systems management. Topics covered include nonlinear programming, traffic equilibrium, traffic assignment, transportation network design,location modeling, and vehicle routing and scheduling. ENCE688Q Transportation Economics (3) Prerequisite: Permission of Instructor. Transportation Economics applies economic theories to transportation engineering and planning. Topics include: demand and demand forecasting,cost and cost estimation, externalities pricing, investment, regulation, industrial organization, economic impact, equity, and other social/environmental issues. Applications and special topics cover urban, intercity, and multimodal transportation. Admissions The Professional Master of Engineering (ENPM) Program and the Graduate Certificate in Engineering (GCEN) Program are open to qualified applicants holding a regionally accredited baccalaureate degree in engineering or a related field. In addition to submitting a Graduate School application with fee, we require the following for evaluation: Official copies of transcripts for all universities attended and degrees awarded Personal Statement (specific instructions here) Three (3) letters of recommendation (current/previous employers or professors). For those students applying for the GCEN Program, letters of recommendation are not required* The Graduate Record Exam (GRE) is not required for application to either the ENPM or GCEN programs US citizens/permanent residents/international applicants with foreign credentials, if your native language is not English and you do not hold a degree from an institution in the US, you may be required to submit proof of English proficiency via TOEFL, IELTS or PTE scores. *While not guaranteed, applicants with an undergraduate GPA of less than 3.0 might be admitted on a provisional basis if they have demonstrated a satisfactory experience in another related graduate program and given strong letters of recommendation. In this case, for those students applying for the GCEN Program, two (2) recommendation letters are required as well. For faster processing of your application, please send official transcripts directly to our office. Also, please have your recommenders use the online form available when you complete your ASF (application supplement form). If letters are being mailed, please send them to our office as well. Office of Advanced Engineering Education 2105 J.M. Patterson Building University of Maryland College Park, MD 20742 [-]

Master's Degree In Automotive Engineering

Universidad Europea de Madrid (UEM)
Campus Part time 9 months

The Master in Automotive Engineering specializes students to work in the automotive industry, providing them with the necessary knowledge from the technical point of view, project management and production to achieve economic and technically feasible solutions to current problems in the automotive sector [+]

The Master's Degree in Automotive Engineering specializes students to work in the automotive industry, providing them with the necessary knowledge from the technical point of view, project management and production to achieve economic and technically to the current problems of the automotive sector viable solutions. This degree prepares students to develop technical analysis of the components and systems of a vehicle: engine, chassis dynamics, suspensions, safety and electronics, among others. It also provides the skills needed to lead the development of any engineering project related to the automotive industry, helping them to identify who is involved in each process and what tools should be used to analyze faults, the specifications, the control plan are, testing and approval. The program puts emphasis on teaching the latest techniques of automobile production, using new, innovative materials and know which are the most common for manufacturing processes are million units. Master training is clearly focused in practice as its main objective is to meet the actual need of the Automotive industry, both nationally and internationally. For this, the learning is based on solving real cases in the industry, using the most modern facilities and laboratories to solve: from laboratories to the development and overhaul of engines, up for testing noise and vibrations, passing by workshops for the manufacture of all kinds of prototypes. Upon completion of postgraduate studies, students in this Master are perfectly able to join engineering teams of any company in the automotive industry, both manufacturers and suppliers of components, subcomponents and services sector. QUALITY GUARANTEE The European University has a wide range of awards that support its academic quality. In particular, it has some of the following prestigious awards, including: the European Seal of Excellence 500+, Quali-cert or Madrid Excellent. In international accreditation QS Stars rating, the European University has obtained a total of a total of four stars out of five in the international rating of accreditation of university quality 'QS Stars'. This external accreditation system determines the level of excellence achieved by universities in several areas. The European University has achieved the highest score of five stars in Employability, Teaching, Facilities and Social Responsibility rating. [-]