Find expert solutions to today's complex business problems
In today’s data driven world, organizations need expert judgement and sharp analysis to ensure they make the right decisions. Business Analytics enables you to harness the power of data science, big data, statistics and machine learning to optimize results and achieve strategic objectives.

Your ability to combine insights from mathematics, computer science and economics with highly developed quantitative and communication skills will make you key to the success of any organization. The Master’s programme will deepen your knowledge in these areas and give you the opportunity to specialize in computational intelligence, business process optimization, and financial risk management. The Master’s degree is concluded with a six-month individual internship at a company, which is often the first step to a thriving international career.

This is what you will be doing
The Master’s programme in Business Analytics is a two year programme consisting of 120 ECTS, divided into four semesters. The first semester is devoted to compulsory courses. During the second and third semester, you may focus on one of the three specializations. Finally, in the fourth semester, you spend six months on an internship at a business or research institute.

Compulsory courses 42 EC
At least four out of sixteen optional BA courses 24 EC
Other optional courses 18 EC
Master's project 36 EC

You will learn:

  • The art of mathematical modelling and ways to apply it in practice
  • To build a complete decision support system in a group project
  • To analyze data and recognize data patterns and structures
  • Mathematical methods used within financial institutions
  • Scientific writing and presentation skills
  • To work in an interdisciplinary team, to communicate and work together with experts in different areas
  • To combine and apply your knowledge in practice by means of a traineeship

Compulsory courses
The compulsory courses are:

  • Applied Stochastic Modelling (6 EC)
    This course provides you with an insight into mathematical modelling and the way it is used in practice. You will explore a number of stochastic solution methods.
  • Data-Mining Techniques (6 EC)
    This course surveys basic data-mining techniques and their application in solving real-life problems in such areas as marketing, fraud detection, text and web mining, and bioinformatics.
  • Applied Analysis: Financial Mathematics (6 EC)
    This course introduces you to the maths used within financial institutions. Topics covered include the theory of options, the binomial method, the Black-Scholes model and its application, the heat equation, and numerical methods.
  • Project Optimization of Business Processes (group project, 6 EC)
    This project concerns the construction and/or design of (part of) a decision support system (DSS) that is designed and built in a scientifically sound way, and can be used in practice. The DSS is built in groups of students.
  • Statistical Models (6 EC)
    In this course you will learn to apply several common statistical models in valid settings, and will learn the theoretical foundation for each model. Topics that will be discussed are: analysis of variance, generalized linear models, non-linear models and time series models.
  • Research Seminar Business Analytics (6 EC)
    During (for instance) the master project the student should consider relevant literature for the research question at hand. This course aims to prepare the student for this step. Getting acquinted with the literature consists of two elements: (i) to be able to study a specific paper in depth, and (ii) to carry out a desk research on scientific literature (sort of review) related to a research question. Both of these elements are addressed during the seminar.
  • Advanced Machine Learning (6 EC)
    Machine learning is the science of getting computers to act without being explicitly programmed. In this course, you will learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work yourself. We will discuss the theoretical underpinnings as well as the practical know-how needed to apply these techniques to new problems.

During the second and third semester you may specialize in one direction of expertise. The three main specializations are:

  • Business process optimization
  • Computational intelligence
  • Financial risk management
Program taught in:
  • English

See 80 more programs offered by Vrije Universiteit Amsterdam »

Last updated October 26, 2018
This course is Campus based
Start Date
Sep 2020
Duration
2 years
Part-time
Full-time
Price
2,083 EUR
for EEA students. €14.500 for non-EU/non-EEA students.
Deadline
By locations
By date
Start Date
Sep 2020
End Date
Application deadline

Sep 2020

Location
Application deadline
End Date