MSc in Advanced Mechanical Engineering

Cranfield University

Program Description

MSc in Advanced Mechanical Engineering

Cranfield University

A general advanced mechanical engineering course particularly relevant to the energy and transport sectors, including mechanical engineering design and assessment. Students will learn project management, design, computer-aided engineering, operation and optimisation of machinery, structural mechanics and integrity.

Who is it for?

Advanced Mechanical Engineering at Cranfield is unique in that it offers you a broad range of mechanical engineering projects with the added component of a management flavour. This provides the opportunity for you to enhance your mechanical engineering skill with a view to developing your career in the management of large engineering projects.

In addition to management, communication, team work and research skills, you will attain at least the following learning outcomes from this degree course:

  • Demonstrate knowledge, fundamental understanding and critical awareness of advanced mechanical engineering techniques necessary for solutions in the transport and energy sectors
  • Demonstrate systematic knowledge across appropriate advanced technologies and management issues to provide solutions for international industries and/or research organisations
  • Demonstrate the ability to acquire, critically assess the relative merits, and effectively use appropriate information from a variety of sources.

Why this course?

The MSc in Advanced Mechanical Engineering is differentiated from other courses available primarily by its industrial context through the strong links we have with national and international industry. We build our industrial links through research and consultancy, which allows us to provide practical and current examples to help illustrate learning throughout the course.

This course is also available on a part-time basis for individuals who wish to study whilst remaining in full-time employment. This enables students from all over the world to complete this qualification whilst balancing work/life commitments. We are very well located for visiting part-time students from all over the world, and offer a range of library and support facilities to support your studies. This MSc programme benefits from a wide range of cultural backgrounds which significantly enhances the learning experience for both staff and students.

Informed by Industry

This degree is particularly industrially focused; although the course does not at present have an industrial advisory board, the course staff are heavily involved in industrially funded and oriented research and development.

The Head of Department, for example, sits on the IMechE Offshore Engineering committee, two BSI committees, the Engineering Integrity Society and is Chairman of the International Ship and Offshore Structures Congress Offshore, Renewable Energy Committee. Course content is reviewed annually by the course team and project/group work is by and large related to the Department's industrially funded research.

Course details

The taught programme for the Advanced Mechanical Engineering masters is generally delivered from October until March and is comprised of eight compulsory taught modules. Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the Course Director.

Group project

The group project undertaken between October and April enables you to put the skills and knowledge developed during the course modules into practice in an applied context while gaining transferable skills in project management, teamwork, and independent research. You will put in to practice analytical and numerical skills developed in the compulsory modules.

The aim of the group project is to provide you with direct experience of applying knowledge to an industrially relevant problem that requires a team-based multidisciplinary solution. You will develop a fundamental range of skills required to work in a team including team member roles and responsibilities, project management, delivering technical presentations and exploiting the variety of expertise of each individual member. Each group will be given an industrially relevant assignment to perform. Industry involvement is an integral component of the group project, to give you first-hand experience at working within real-life challenging situations.

It is clear that the modern design engineer cannot be divorced from the commercial world. In order to provide practice in this matter, a poster presentation will be required from all students. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner. All groups submit a written report and deliver a presentation to the industry partner.

Part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Recent group projects include:

  • Preliminary design of an offshore floating wind turbine
  • Multi-disciplinary design of an high speed marine vehicle with aerodynamic surfaces
  • Design optimisation of the drive train for a vertical axis wind turbine.

Individual project

The aim of the individual research project is to provide you with direct experience in undertaking a research/development project in a relevant industrial or research area. You will make a formal presentation of your findings to a panel of academics and industry experts and submit a research thesis.

The individual research project component takes place from March to August.

For part-time students, it is common that their research thesis is undertaken in collaboration with their place of work and supported by academic supervision.

Recent individual research projects include:

  • Comparison of a panel method and Reynolds averaged Navier-Stokes (RANS) method to estimate the aerodynamic coefficients of a profile flying in ground effect
  • The stress shielding effect of cracks in loaded components
  • Review and modelling of heave and roll motion passive damping systems for offshore floating support structures for wind turbines.

Assessment

Taught modules 40% Group Project 20% Individual Research Project 40%

Entry requirements

A first or second class UK Honours degree (or equivalent) in mathematics, physics or an engineering discipline. Other recognised professional qualifications or several years relevant industrial experience may be accepted as equivalent; subject to approval by the Course Director.

Applicants who do not fulfill the standard entry requirements can apply for the Pre-Masters programme, successful completion of which will qualify them for entry to this course for a second year of study.

English Language

If you are an international student, you will need to provide evidence that you have achieved a satisfactory test result in an English qualification. Our minimum requirements are as follows:

In addition to these minimum scores, you are also expected to achieve a balanced score across all elements of the test. We reserve the right to reject any test score if any one element of the test score is too low.

We can only accept tests taken within two years of your registration date (with the exception of Cambridge English tests which have no expiry date).

Students requiring a Tier 4 (General) visa must ensure they can meet the English language requirements set out by UK Visas and Immigration (UKVI) and we recommend booking a IELTS for UKVI test.

Applicants who do not already meet the English language entry requirement for their chosen Cranfield course can apply to attend one of our Presessional English for Academic Purposes (EAP) courses. We offer Winter/Spring and Summer programmes each year to offer holders.

Your career

Industry-driven research makes our graduates some of the most desirable in the world for recruitment. The MSc in Advanced Mechanical Engineering takes you onto a challenging career in industry, government or research. The course reflects the strengths and reputation of Cranfield particularly in the energy, transport and management sectors. Graduates of this course have been successful in gaining employment in the following roles:

  • Mechanical Design Engineer at Siemens
  • Production Line Supervisor & Lean Implementer at GKN Land Systems
  • Staff Engineer at BPP Technical Services Ltd working on offshore oil and gas engineering.
  • Engineer at Det Norske Veritas
  • Management Associate at BMW Group UK Limited
  • Project Engineer at BASF Coatings S.A.

This school offers programs in:
  • English


Last updated October 9, 2018
Duration & Price
This course is Campus based
Start Date
Start date
Oct. 2019
Duration
Duration
1 - 3 years
Part time
Full time
Price
Price
10,250 GBP
Home/EU students, full-time program. £20,500 overseas students.
Information
Deadline
Locations
United Kingdom - Cranfield, England
Start date : Oct. 2019
Application deadline Request Info
End date Request Info
Dates
Oct. 2019
United Kingdom - Cranfield, England
Application deadline Request Info
End date Request Info