Mechatronics and Robotics Engineering

M.Sc. students must complete a total of at least 36 – credit hours, within the following guidelines:

  • Course work of 18- credit hours, including 6- credit hours as core course, 9-credit hours as elective courses, and a 3-credit hour Laboratory/Project-Based Learning course.
  • Thesis work of 18 credit hours

M.Sc. students have to pass successfully six courses with three credit hours each.

Courses

Core courses:

  • MTR 501- Advanced Mechatronics Systems Design
  • MTR 502- Optimal Control

Elective Courses:

Students select the 9-credit elective courses, from the set Mechatronics and Robotics elective courses. Students can also select, with the aid of their academic advisors, elective courses from other interdisciplinary graduate programs.

  • MTR 503- Advanced Control Systems
  • MTR 504- Micro-Electro-Mechanical Systems (MEMS)
  • MTR 505- Mobile Robots and Vision Systems
  • MTR 506- Advanced Topics in Mechanical Systems Design
  • MTR 507- Intelligent Robots
  • MTR 508- Robot Kinematics, Dynamics and Control
  • MTH 501- Advanced Mathematics and Statistics I

Project-Based Learning Course:

Master of Science students in Mechatronics have to attend successfully the Project Based Learning course to improve their design and professional skills. Students have to present concepts and competitive solutions through the teamwork spirit. The total credit hours of the course are three.

  • MTR 701- Project Based Learning in Mechatronics and Robotics

M.Sc. Thesis:

The M.Sc. candidate should prepare and defend a Thesis based on high-valued research work in one research topic in the fields of Mechatronics and Robotics.

  • MTR 801 – M. Sc. Thesis

About the Department

Introduction

The Department of Mechatronics and Robotics Engineering is the synergistic integration of precision machinery, electronics and information technology to design innovative components and systems to create functional and smart products. The research priorities of the graduate program are in the areas of bio-Mechatronics, autonomous robots, intelligent robots, intelligent control systems, smart sensors/actuators, and Micro/Nano-Electro-Mechanical Systems (MEMS/NEMS) for industrial, automotive, and biomedical applications.

Vision

The vision of the Department of Mechatronics and Robotics is to stand among the best Mechatronics departments in the region through establishing the state of the art research and education environment for excellent research impact, outstanding graduates and quality of community service.

Mission

The mission of the Department of Mechatronics and Robotics is to conduct leading-edge research and to prepare excellent graduates from all countries with equal chances, who can exploit the state of the art technologies, develop intelligent machines, and actively participate in industrial research and development centers, through introducing high-quality research-oriented education.

Objectives

  • To take an active role in addressing and providing solutions for current and potential future needs of regional and international industries.
  • To develop critical thinking skills for the design and evaluation of Mechatronics products and systems.
  • To develop advanced experimental skills practicing in modern laboratories applying the Problem Based Learning methodology.
  • To develop communication skills of preparing professional proposals, reports, articles and presentations in national and international scientific events and communities.
  • To develop integrated teamwork skills for interacting with other members from different specializations.
  • To establish strong and effective co-operation with national and international research institutes, universities and industries relevant to Mechatronics.
  • To implement the recognition of the Mechatronics degrees by international accrediting bodies or dual degree with Japanese partner universities.

Laboratories:

  • Bio-Mechatronics Lab
  • Magnetic Bearing and Magnetic Levitation Lab
  • Intelligent Mechatronics Lab
  • Field and Service Robots Lab
  • MEMS Lab

Research Areas

Bio-Mechatronic Systems

  • Surgical Robots
  • Rehabilitation Robots and Assistive Devices
  • Human-Robot Interaction
  • Prosthetic Devices
  • Smart Medical Devices
  • Bio-Inspired Robots

Magnetic Suspension and Bearing Systems

  • Control of Magnetic Bearing Systems
  • Applications of Magnetic Bearing in Medical Field
  • Magnetically Levitated Wind Turbine
  • Robots with Magnetic Bearing Joints
  • Vibration Isolation Systems Using Magnetic Suspension
  • Self-Bearing (Bearingless) Motors.

Intelligent Mechatronics Systems

  • Flying/Walking Robot.
  • Tele-Operation Systems.
  • Aerial Manipulation Systems
  • Multi-Locomotion Robots
  • Legged Robots
  • Wearable Vehicle
  • Brain-Based Devices
  • Micro/Nano Manipulation
  • Parallel & Interconnected Manipulators
  • Swarm Robots
  • Intelligent control of Smart Actuators
  • Micro Smart Sensor/ Actuators
  • Nonlinear Vibration Systems
  • Smart Structures

Field and Service Robots

  • Mobile Robot Exploration, Navigation and Control
  • Rescue Robots
  • Inspection Robot
  • Climbing Robots
  • Robot Motion Control in Unstructured Area
  • Landmines Detection Robots
  • Indoor Service Robot.
  • Insect-Killing Robot
  • Solar Powered Rover
  • Autonomous Underwater Vehicles, AUV
  • Agriculture Robots
  • Mining Robots
  • Forestry Robots
  • Construction Robots

Micro/Nano Electro-Mechanical Systems

  • Tactile Sensing Systems
  • Smart Sensor/ Actuators
  • Micro Energy Harvesting Devices
  • Micro Flying Robot
  • Microfluidics Systems
Program taught in:
English

See 11 more programs offered by Egypt-Japan University of Science and Technology »

Last updated May 27, 2019
This course is Campus based
Start Date
Feb 2020
Duration
2 years
Full-time
Price
13,000 USD
Deadline
By locations
By date
Start Date
Feb 2020
End Date
Application deadline

Feb 2020

Location
Application deadline
End Date