Part time Master's Degree in Molecular Sciences

View Part time Masters Programs in Molecular Sciences 2017

Molecular Sciences

A masters is the first level of graduate coursework and can be obtained after you receive a bachelor’s degree. Earning a masters usually requires two years of full-time study, which amounts to 36 to 54 semester credits.

 

Study in molecular sciences can open up many innovative and new scientific fields to pursue, including molecular neuroscience, cytogenetics, molecular genetics, molecular basis of monogenic diseases, molecular virology and immunology, and the molecular basis of complex diseases.

Request Information Part time Masters Degrees in Molecular Sciences 2017

Read More

Master of Molecular Life Sciences

HAN University of Applied Sciences
Campus Part time 24 - 30 months September 2017 Netherlands Nijmegen

The Masters courses at HAN University of Applied Sciences are internationally renowned for their seamless integration with professional practice. HAN’s Masters course in Molecular Life Sciences is unique in that it focuses on applied research and product [+]

Best Part time Masters in Molecular Sciences 2017. For EU students Translating research into products The Masters courses at HAN University of Applied Sciences are internationally renowned for their seamless integration with professional practice. HAN’s Masters course in Molecular Life Sciences is unique in that it focuses on applied research and product development, and because it integrates scientific and project management skills. In this way the course meets the needs of the actual work field. During your studies you gain extensive knowledge in the field and learn how to apply fundamental research to biotechnical product development such as vaccines, drugs, diagnostic tests biofuels and enzymes. Professional opportunities The biotech industry, pharmaceutical companies, hospitals and research institutions are constantly in need of competent, goal-oriented and interdisciplinary professionals. Graduates of this Masters course are able to independently plan and execute short to medium-length projects. You will be employable in positions such as junior project leader and lab manager. Another option for you as a Masters graduate is to continue your academic career with a PhD project, preferably in applied research. Two-year course taught in English The Masters course in Molecular Life Sciences is taught entirely in English. You can combine your work with study by taking this part-time two-year course. Master in Molecular Life Sciences Upon successful completion of the course, you will attain the title 'Master of Science'. Admission requirements You will be admitted to the course if you meet the following criteria: - You have a Bachelor of Applied Sciences, Bachelor of Science or a Masters degree in molecular life sciences, biochemistry, biotechnology, molecular biology or a related field. - You have at least one year of practical experience in a molecular, cell biology or biochemistry laboratory setting. - Your knowledge and skills will be verified by a written test on molecular and cell biology and a telephone interview. Alternatively: - You are an international applicant with a different diploma (e.g. a technician's qualification from Germany). In this case, your qualifications will need to be evaluated as equivalent to a Bachelor of Applied Sciences in the HAN admission assessment. - In such cases, a minimum of three years’ work experience is advised before applying. High level of English To be eligible for enrolment you must be proficient in English, with the following minimum scores: TOEFL score 550 / IELTS score 6.0 / Cambridge Certificate in Advanced English (CAE) or Proficiency in English (CPE). Applicants enrolling via an admission assessment can demonstrate their language skills during the assessment. [-]

Master of Engineering Chemical and Biomolecular Engineering

University of Maryland, A. James Clark School of Engineering
Campus Part time 1 - 5 years September 2017 USA College Park

The Graduate Program in Chemical and Biomolecular Engineering offers research and education opportunities leading to the Master of Science and Doctor of Philosophy degrees. [+]

The Graduate Program in Chemical and Biomolecular Engineering offers research and education opportunities leading to the Master of Science and Doctor of Philosophy degrees. The Department of Chemical and Biomolecular Engineering is well-equipped for graduate research in aerosol science and engineering, biochemical engineering, computational modeling, fluid mechanics and mixing, fuel cell technology, metabolic engineering and systems biology, nanoparticle technology, polymer processing and characterization, polymer reaction engineering, process control, thermodynamics and transport phenomena, and systems research. The Department maintains a distributed computing network consisting of research laboratories and a PC laboratory. Major research facilities including electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and NMR are coordinated through a variety of laboratories. General Requirements Before graduate courses in Chemical Engineering are attempted, the candidate must fulfill certain minimal course prerequisites either by previous experience or by taking selected undergraduate courses. These minimal prerequisites are descibed in the GPA and prerequisite policy page. Some of these prerequisites may be fulfilled by concurrent registration if necessary. No courses numbered below 400 may count towards the minimal 30 credits required for the degree. A maximum of 6 credits of 400 level courses may count towards the degree subject to prior approval by the Graduate Director. Graduate courses with an EMPM designation cannot be used to satisfy the minimum 30 hours without prior permission of the Graduate Director. All graduate students (full and part-time, on and off campus) are expected to attend all research seminars, i.e., those not specifically directed to 1st year students. Students that fail to regularly attend research seminars will receive a notice from the director of graduate studies; extreme cases can be considered insufficient progress towards degree. Exceptions to this requirement will be made on a case-by-case basis by the graduate program committee; such exceptions include off-campus students that demonstrate regular participation in an on-campus seminar series that takes place at a more convenient time, or an off-campus technical seminar series. Students granted this exception should turn in a list of seminars attended to the director of graduate students before the end of each spring and fall semester. The Department of Chemical and Biomolecular Enginering's overall expectations for all students enrolled in its graduate program are that they will: make significant scholarly contributions to the field of chemical and biomolecular engineering, which is primarily measured by publications in peer-reviewed journals; and demonstrate an ability to communicate research findings to an audience of their peers in the field of chemical and biomolecular engineering, which is primarily measured by presentations at conferences. These publications and presentations must be documented on the final page(s) of each student's written thesis. For details, see "M.S. Thesis," below. GPA The Graduate School requires students to maintain a 3.0 GPA in all courses for credit since enrollement. The Department of Chemical and Biomolecular Engineering further requires that students attain at least a 3.0 GPA in tthe four required graduate core courses–ENCH 610, 620, 630 and 640–where this GPA is computed using the letter+/- system. Typical Plans of Study In principle, a candidate fulfilling all of the General Course requirements can complete the requirements for the Master of Science degree in one year. However, it is unusual for students to complete their program in less than 3 semesters. For candidates having a previous degree in a non-Chemical Engineering technical area, a 2 to 2.5 year program is usually necessary. An example plan of study is given in the M.S. Course Requirement Advising Form (.docx). Individual plans of study will be developed upon request by the Departmental Graduate Director. [-]