Part time Master's Degree in Materials Science in North America

View Part time Masters Programs in Materials Science in North America 2017

Materials Science

The benefits of a Masters extend beyond improving your earning potential. They can provide you with personal and professional skills to accelerate your development. They are also an opportunity to differentiate yourself from your peers, many of whom will have similar A-level and undergraduate qualifications.

By focusing on research and development, materials science is able to provide new materials for use in industries. Materials science relies on several scientific and engineering departments to work together to problem-solve for the future.

The United States of America is a large country in Northern America, often known as the "USA", the "US", the "United States", "America", or simply "the States". It also gathers over 310 million people which is the world's third largest population. It includes densely populated cities with sprawling suburbs, and vast, uninhabited and naturally beautiful areas at the same time.

Contact Schools Best Part time Masters Degrees in Materials Science in North America 2017

Read More

Master of Engineering Chemical and Biomolecular Engineering

University of Maryland, A. James Clark School of Engineering
Campus Part time 1 - 5 years September 2017 USA College Park

The Graduate Program in Chemical and Biomolecular Engineering offers research and education opportunities leading to the Master of Science and Doctor of Philosophy degrees. [+]

Top Part time Masters in Materials Science in North America. The Graduate Program in Chemical and Biomolecular Engineering offers research and education opportunities leading to the Master of Science and Doctor of Philosophy degrees. The Department of Chemical and Biomolecular Engineering is well-equipped for graduate research in aerosol science and engineering, biochemical engineering, computational modeling, fluid mechanics and mixing, fuel cell technology, metabolic engineering and systems biology, nanoparticle technology, polymer processing and characterization, polymer reaction engineering, process control, thermodynamics and transport phenomena, and systems research. The Department maintains a distributed computing network consisting of research laboratories and a PC laboratory. Major research facilities including electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and NMR are coordinated through a variety of laboratories. General Requirements Before graduate courses in Chemical Engineering are attempted, the candidate must fulfill certain minimal course prerequisites either by previous experience or by taking selected undergraduate courses. These minimal prerequisites are descibed in the GPA and prerequisite policy page. Some of these prerequisites may be fulfilled by concurrent registration if necessary. No courses numbered below 400 may count towards the minimal 30 credits required for the degree. A maximum of 6 credits of 400 level courses may count towards the degree subject to prior approval by the Graduate Director. Graduate courses with an EMPM designation cannot be used to satisfy the minimum 30 hours without prior permission of the Graduate Director. All graduate students (full and part-time, on and off campus) are expected to attend all research seminars, i.e., those not specifically directed to 1st year students. Students that fail to regularly attend research seminars will receive a notice from the director of graduate studies; extreme cases can be considered insufficient progress towards degree. Exceptions to this requirement will be made on a case-by-case basis by the graduate program committee; such exceptions include off-campus students that demonstrate regular participation in an on-campus seminar series that takes place at a more convenient time, or an off-campus technical seminar series. Students granted this exception should turn in a list of seminars attended to the director of graduate students before the end of each spring and fall semester. The Department of Chemical and Biomolecular Enginering's overall expectations for all students enrolled in its graduate program are that they will: make significant scholarly contributions to the field of chemical and biomolecular engineering, which is primarily measured by publications in peer-reviewed journals; and demonstrate an ability to communicate research findings to an audience of their peers in the field of chemical and biomolecular engineering, which is primarily measured by presentations at conferences. These publications and presentations must be documented on the final page(s) of each student's written thesis. For details, see "M.S. Thesis," below. GPA The Graduate School requires students to maintain a 3.0 GPA in all courses for credit since enrollement. The Department of Chemical and Biomolecular Engineering further requires that students attain at least a 3.0 GPA in tthe four required graduate core courses–ENCH 610, 620, 630 and 640–where this GPA is computed using the letter+/- system. Typical Plans of Study In principle, a candidate fulfilling all of the General Course requirements can complete the requirements for the Master of Science degree in one year. However, it is unusual for students to complete their program in less than 3 semesters. For candidates having a previous degree in a non-Chemical Engineering technical area, a 2 to 2.5 year program is usually necessary. An example plan of study is given in the M.S. Course Requirement Advising Form (.docx). Individual plans of study will be developed upon request by the Departmental Graduate Director. [-]

Civil Engineering

International University Alliance
Campus Part time September 2017 USA Boston

The Master's degrees offer students a chance to advance their knowledge above that of the undergraduate level, and a chance to begin to specialize in one of the sub-disciplines of Civil or Environmental Engineering. [+]

Civil Engineering Master's programs The Master's degrees offer students a chance to advance their knowledge above that of the undergraduate level, and a chance to begin to specialize in one of the sub-disciplines of Civil or Environmental Engineering. All Master's degrees may require that students take one or more undergraduate courses as articulation (pre-requisite) if they are coming from a different undergraduate engineering or a related science field in order to become fully prepared for graduate work in Civil or Environmental Engineering. Thesis Option The Master's degree programs can either be research-oriented (thesis option) or non-research-oriented (non-thesis option). The Thesis option is the only option for students who are receiving a fellowship or assistantship (GTA or GRA) from the department. Therefore, it is strongly recommended for all full-time students, even those who think that they can pay for their own education. A minimum of twenty four (24) semester hours of approved course work along with a minimum of six (6) hours of thesis credits is required. A minimum of twenty four (24) semester hours of approved course work along with a minimum of six (6) hours of thesis credits is required. No more than six hours of thesis credits will be applied toward degree requirements. At least 15 credit hours must be at the 6000-level (includes thesis hours). A maximum of 9 semester hours of graduate credit may be transferred into the program from non-degree-seeking status or regionally accredited institutions. Only grades of "B-" or better can be transferred. A minimum "B" (3.0) average must be maintained in the program of study and no more than two C+, C, and C- grades are allowed. No D+ or lower grades are acceptable. A written thesis and final oral defense are required. Once six hours of thesis credits have been completed and all course work has been satisfied, the student is required to have continual enrollment in one hour of thesis until the final thesis has been received by the Division of Graduate Studies (but also see next rule). International students have to meet all Graduate Studies and ISS rules to remain in legal standing as a full-time student throughout their tenure at the university. Master's Thesis Committee The thesis committee will consist of a minimum of three members. All committee members should hold a doctoral degree and be in fields related to the thesis topic. At least two members must be department faculty (one to serve as chair). Off-campus experts, joint faculty members, adjunct faculty, and other university faculty members may serve as the third person in the committee. In unusual cases, with approval from the department Chair, two professors may chair the committee jointly. Joint faculty members may serve as committee chairs, but off-campus experts and adjunct faculty may not serve as committee chairs. All members vote on acceptance or rejection of the thesis proposal and the final thesis. The final thesis must be approved by a majority of the advisory committee Non-Thesis Option With a requirement of 30 semester hours of coursework, the non-thesis option is intended primarily for part-time students. The program requirements are the same as for the thesis option except that the thesis requirement is replaced by 6 credit hours of course work. An advisor is required, and he/she will review and sign the program of study. [-]

Master of Engineering: Mechanical-Materials

University of Windsor
Campus Part time 3 - 5 semesters September 2017 Canada Windsor

In order to graduate with an MEng degree, a student must successfully complete eight graduate-level courses, including five from their area of specialization plus one more engineering course (from any department) and no more than two non-engineering courses. [+]

Top Part time Masters in Materials Science in North America. MEng Program Information In order to graduate with an MEng degree, a student must successfully complete eight graduate-level courses, including five from their area of specialization plus one more engineering course (from any department) and no more than two non-engineering courses. Alternatively, a student may choose to complete all eight courses within their area of specialisation. Engineering Materials The Vision Statement for the Engineering Materials Graduate Program is: The Engineering Materials Graduate Program recognizes the close relationship between advanced level education and the advancement of knowledge, and is committed to excellence in graduate teaching and research. The Mission statement for the Engineering Materials Graduate Program is to provide an outstanding learning environment for productive graduate research to maintain state-of-the-art research laboratories equipped with the most modern research equipment to offer students with opportunities for a rewarding education to keep self-sustained growth by a high output of student co-authored peer-reviewed research publications, and strengthening collaborative research with other universities and industry to expose students to challenging industrial problems that are studied using a sound scientific methodology and experimental/theoretical research skills to prepare students for careers in teaching and/or research in academia or in industry to train students to acquire autonomy in conducting innovative research The Engineering Materials (EM) graduate program is fully accredited by the Council on Quality Assurance of Ontario Universities (previously, Ontario Council on Graduate Studies (OCGS)). The high caliber of the research activity within the Engineering Materials Program has been a traditional strength of the program. The objective of the program is to continue to provide an outstanding learning environment for productive graduate research. The Engineering Materials faculty members are constantly seeking to attract the best qualified students to the Master’s and Ph.D. programs, and provide them with fundamental research skills on the processing, microstructures, properties, and performance of materials. We make every effort to provide a stimulating and dynamic learning and research environment that fosters the intellectual development of our students. Close relations with industry expose our students to challenging industrial problems that are studied using a sound scientific methodology and experimental/theoretical research skills. As a result, our MASc. graduates become highly regarded professionals in the materials and manufacturing industries, many assuming leadership positions. General The Master of Engineering (MEng) degree offered at the University of Windsor is a course work professional program open to students who satisfy the admission requirements. The MEng Program takes three to five semesters to complete but is structured in such a way that it may be completed in one year by a full-time student. The minimum period of full-time registration for the MEng degree is three semesters and the maximum allowable time is five semesters. For part-time students, the minimum period of registration for the MEng degree is six semesters and the maximum allowable time is fifteen consecutive semesters. Practical work-experience placements (paid and unpaid) may be available for full-time students only, but cannot be guaranteed. Schemes of Study The Master of Engineering may be taken by full-time students or those who wish to study on a part-time basis while remaining in full-time employment external to the University. All applicants for the MEng program are expected to be entirely self-funded and no financial assistance will be provided by the Faculty of Engineering or the University of Windsor. International students are admitted as full-time students only. Full-Time Students will be: required to register for a maximum of three courses per semester, required to register for a minimum of two courses per semester, expected to complete all degree requirements within 5 academic semesters. Part-Time Students will be: required to register for a maximum of admissible two courses per semester, required to complete all degree requirements within 15 academic semesters and should not have more than two semesters of continuous "inactive" status Admission Requirements The Department should approve the application and in addition, MEng applicants shall be recommended for admission by the Faculty of Engineering Coordinator. Official admission to any program of graduate studies is in the form of a "Letter of Acceptance" issued by the Faculty of Graduate Studies. Please note that the following are minimum requirements and do not guarantee admission. Undergraduate degree (BASc / B.Sc. / B.Eng. degree or equivalent*) with at least 73% average over the last two years. International applicants are advised to refer to the specified minimum admission requirements, listed by country, at the Faculty of Engineering’s Professional and Graduate Studies (FEPGS) website and the Faculty of Graduate Studies website. *Candidates with degrees in such areas as Mathematics, Physics and Computer Science will also be considered. Students whose undergraduate degree programs do not provide them with sufficient background in Design, Applied Science and Professional/Technical communications are required to enter a qualifying program of courses at the undergraduate level before admission to candidature for the MEng degree. Students entering and successfully completing the MEng qualifying program may receive an Advanced Certificate in Engineering. A candidate who has not fulfilled the minimum requirement of 73% average may be admitted to the MEng Program as a probationary student** provided that he/she has either: at least 2 years of industrial or engineering experience following graduation or achieved at least 77% overall standing in the Final Year of the graduation. **Such candidates will be required to achieve a grade of at least 73% in the first two MEng courses to be regularized in the MEng Program. The language of instruction for the MEng courses is English. Applicants will be required to provide certification of English language proficiency, if he or she has: not completed three or more years of post-secondary work at a Canadian institution or at an institution at which English was the primary language of instruction***, *** Countries in which English is the Official Language of Instruction, as recognized by the Faculty of Engineering are listed on the Faculty of Engineering’s FEPGS website and the Faculty of Graduate Studies website. English Language proficiency may be met by the language coursework at the secondary school level in the countries listed on the FEPGS website. or not been employed for a similar period of time in a position in which English was the primary language of business. Where applicable a student’s certification of English language proficiency can be demonstrated by a minimum score set by the department. For minimum requirements in other equivalent exams, information is available in the Faculty of Graduate Studies web-site. The Faculty of Engineering and the Faculty of Graduate Studies reserve the right to require further demonstration of English Language proficiency. The Department may consider for admission to its degree programs students from outside Canada who have excellent academic preparation, but who do not meet the usual standards of English language proficiency. Successful completion of the English Language Improvement Program (ELIP) will be considered as a means to gain admission to the Department for such students. Students who do not meet the academic requirements outlined above may be considered for admission to a transitional, probationary or qualifying program depending on their academic background. Students seeking admission to the Department’s MEng programs must also complete the Department’s Graduate Student Information Form and the Faculty of Graduate Studies Admission Reference form. Program Requirements An MEng Degree may be awarded upon successful completion of a total of 8 courses (the MEng has no research component/thesis/work with a faculty supervisor). Of these 8 courses ... 5 to 8 must be from the student's department (major; electrical, electrical-computer, mechanical, materials, industrial, environmental, civil) 0 to 3 may be from another engineering department 0 to 2 may be from a department outside of engineering Co-op work experience is optional [-]

Master of Engineering in Material Science & Engineering

University of Maryland, A. James Clark School of Engineering
Campus Part time 1 - 5 years September 2017 USA College Park

If you are interested in a career in Materials Science and Engineering or want to learn more about this exciting field at the graduate level, you have come to the right place! [+]

If you are interested in a career in Materials Science and Engineering or want to learn more about this exciting field at the graduate level, you have come to the right place! Our Doctoral and Masters degree programs in Materials Science and Engineering (MSE, MatSci) encompasses advanced education in the entire spectrum of the field of materials: organics, semiconductors, ceramics, metals and composites. Materials are everywhere! The technology revolution of the 21st century is based on products made from new materials. There are three basic elements of the field that come to play on the development of the graduate MSE student: Processing and synthesis: This is the key to the question that must be answered. How can I produce this product? Structure and Properties: This is the key to the question of characterizing the materials, and from which to understand the state or condition of the material. Characterizing a material involves the understanding of the ways a materials is configured from atomic to macroscale. These arrangements are correlated with processing and coupled strongly with material properties. Performance: The composite of structure, properties and processing is integrated into how the product performs. The Department of Materials Science and Engineering at the University of Maryland offers more than 40 graduate courses in order to assist in the intellectual development of the graduate MSE student. We are continuously improving our course materials in order to keep it relevant and in order to allow the student to make a significant career impact upon graduation. Admission Requirements Full admission as a degree seeking student requires the following prerequisites: A bachelor's degree, GPA of 3.0 or better, in engineering or a closely related discipline; Computer Science, Physics, Applied Mathematics, or Physical Sciences from an accredited institution. Courses in mathematics (Calculus I, II, III, & Differential Equations), and Thermodynamics, Solid State Physics, and Kinetics are required to be considered for admission. Further admissions requirements. Completed applications are reviewed and considered for admission on a case-by-case basis. [-]