Masters Programs in Materials Science

Compare 49 Masters Programs in Materials Science

Materials Science

Materials Science is a field which is connected to both Science and Engineering. Its primary focus is on determining the relationship between the structure of materials and their macroscopic properties. With the recent developments in nanotechnology, Materials Science has become a main priority at many universities and has a need for more students educated in this field. If you are interesting in joining in this area of study, then a Master in Materials Science is the first step.

Students wishing to pursue a Master in Materials Science must have the appropriate educational background, usually a bachelor’s degree in a field of science. Continuing your education with a Master in Materials Science is a wise choice as there are some promising and rewarding career opportunities in many sectors. offers a variety of Master in Materials Science programs. Here you can find programs worldwide that will suit your academic needs. You can investigate subjects like Infrastructure, Management Information Systems, or Computer Science.

Do these degrees sound fascinating to you? Then click on the links below to follow your dream toward a Master in Materials Science!

Read More

Integrated Master's in Materials Engineering

University of Minho - School of Engineering
Campus Full time 5 years September 2017 Portugal Braga

The course aims at training engineers with a thorough knowledge of the properties of several materials, their manufacturing methods and technologies and the ?structure-property-processing? relationships. [+]

Masters in Materials Science . Academic degree: Bachelor (Bologna 1st cycle degree), Master's degree ECTS: 300 Duration: 5 curricular years Regime: Normal Place: Azurém Campus, Guimarães Main Scientific area: Material Science and Engineering INTEGRATED MASTER’S | 5 YEARS Materials Engineering is a multidisciplinary and cross course a key area for the development of new materials and technologies. Trains engineers with a vast knowledge of the properties of materials, characterization techniques, methods and manufacturing technologies. The goal is acknowledge the structure-processing-property relationships that determine products’ performance. The materials engineer is able to analyse the raw material, understand and manipulate their properties for the development of new materials. It is also able to select materials, design and build more innovative products and technologies. Graduates will be able to work in various industries and services, as in the production of raw materials, product development industry, processing industry, micro and nanotechnology industry or aviation, consulting and sales, quality control and research. Careers The graduates will be able to take on the role required by telecommunications operators of various kinds, by companies working with computer networks, by companies which develop telecommunications equipment and applications and also by content suppliers, bearing in mind the research and development centres which develop their activities within this domain. [-]

Master’s programme in Textile Engineering

University of Borås
Campus Full time 2 - 2 years August 2017 Sweden Borås

Get the skills in and become prepared for employment within management or qualified research functions in textile-related engineering, for example material and product design and development, manufacturing, functional and interactive textile structures. [+]

Master’s programme in Textile Engineering   The Master’s programme in Textile Engineering focuses on advanced technological textiles, where the design process has a crucial role, but where also materials engineering, nano-technology and crossdisciplinary insight into the textile value chain are extremely important for the outcome. It is intended to qualify you for employment in managerial and developmental roles within the textile industry and related activities. There is a vivid exchange with current research in the field, strong professional links and the capacity to stimulate students to develop their skills for qualified employment within the textile sector, which may include a scientific career or developing their own business. Your capacity for innovation will be encouraged and together with deep subject knowledge you become well placed to create and support new businesses in the industry. The programme will provide environmental, ecological, ethical and globalization-related awareness. Building a personal network is important and is supported in the School of Textiles environment through interaction with a range of people in design, technology and management professions. Upon graduation, you will have skills in and be prepared for employment within management or qualified research functions in textile-related engineering, for example material and product design and development, manufacturing, functional and interactive textile structures. You will be prepared for qualified tasks at the advanced level within the textile technology field and will have attained a comprehensive understanding of the textile value chain with specialisation in development, innovation and leadership. Upon graduation, you will have the ability to: demonstrate and apply broad knowledge of textile materials, processes and applications; apply essential theories and methods in materials and manufacturing technology; critically and systematically gather literature and theory within the textile engineering area; lead and participate in the development, design, manufacturing and adaptation of advanced and smart textile products; apply acquired knowledge of the textile value chain, with a focus on logistics, resource efficiency, sustainability and quality; integrate and apply knowledge in the field for research and development purposes and other skilled activities; quickly obtain new organisational skills and apply them to textile-related development and innovation by creating, analysing and critically evaluating various textile process-related solutions; develop and design textile materials, products, processes and systems with regard to human conditions and needs and society’s objectives for economically, socially and ecologically sustainable development; participate in teamwork and cooperate in groups of differing composition. Entry Requirements Bachelor´s degree in Textile Technology/Engineering, 180 credits, or equivalent. Verified knowledge of English corresponding to the course English B in the Swedish Upper Secondary School or a Bachelor´s degree from a university in Sweden, Denmark, Norway, Finland or Iceland. [-]

Civil Engineering

International University Alliance
Campus Full time Part time September 2017 USA Boston

The Master's degrees offer students a chance to advance their knowledge above that of the undergraduate level, and a chance to begin to specialize in one of the sub-disciplines of Civil or Environmental Engineering. [+]

Masters in Materials Science . Civil Engineering Master's programs The Master's degrees offer students a chance to advance their knowledge above that of the undergraduate level, and a chance to begin to specialize in one of the sub-disciplines of Civil or Environmental Engineering. All Master's degrees may require that students take one or more undergraduate courses as articulation (pre-requisite) if they are coming from a different undergraduate engineering or a related science field in order to become fully prepared for graduate work in Civil or Environmental Engineering. Thesis Option The Master's degree programs can either be research-oriented (thesis option) or non-research-oriented (non-thesis option). The Thesis option is the only option for students who are receiving a fellowship or assistantship (GTA or GRA) from the department. Therefore, it is strongly recommended for all full-time students, even those who think that they can pay for their own education. A minimum of twenty four (24) semester hours of approved course work along with a minimum of six (6) hours of thesis credits is required. A minimum of twenty four (24) semester hours of approved course work along with a minimum of six (6) hours of thesis credits is required. No more than six hours of thesis credits will be applied toward degree requirements. At least 15 credit hours must be at the 6000-level (includes thesis hours). A maximum of 9 semester hours of graduate credit may be transferred into the program from non-degree-seeking status or regionally accredited institutions. Only grades of "B-" or better can be transferred. A minimum "B" (3.0) average must be maintained in the program of study and no more than two C+, C, and C- grades are allowed. No D+ or lower grades are acceptable. A written thesis and final oral defense are required. Once six hours of thesis credits have been completed and all course work has been satisfied, the student is required to have continual enrollment in one hour of thesis until the final thesis has been received by the Division of Graduate Studies (but also see next rule). International students have to meet all Graduate Studies and ISS rules to remain in legal standing as a full-time student throughout their tenure at the university. Master's Thesis Committee The thesis committee will consist of a minimum of three members. All committee members should hold a doctoral degree and be in fields related to the thesis topic. At least two members must be department faculty (one to serve as chair). Off-campus experts, joint faculty members, adjunct faculty, and other university faculty members may serve as the third person in the committee. In unusual cases, with approval from the department Chair, two professors may chair the committee jointly. Joint faculty members may serve as committee chairs, but off-campus experts and adjunct faculty may not serve as committee chairs. All members vote on acceptance or rejection of the thesis proposal and the final thesis. The final thesis must be approved by a majority of the advisory committee Non-Thesis Option With a requirement of 30 semester hours of coursework, the non-thesis option is intended primarily for part-time students. The program requirements are the same as for the thesis option except that the thesis requirement is replaced by 6 credit hours of course work. An advisor is required, and he/she will review and sign the program of study. [-]

Master in Product Development and Materials Engineering

Jönköping University
Campus Full time 2 years September 2017 Sweden Jönköping

As competition between companies is getting tougher as the number of products on the market increases, many are realising the importance of product development and material knowledge as a competitive means. This programme covers the entire product development process, from conceptual engineering design to materials and manufacturing processes. [+]

As competition between companies is getting tougher as the number of products on the market increases, many are realising the importance of product development and material knowledge as a competitive means. This programme covers the entire product development process, from conceptual engineering design to materials and manufacturing processes. The work of engineers within product development is creative and offers a great deal of variety. This Master's programme (two years) qualifies students for positions with the manufacturers and suppliers that develop and produce components or as consultants. Emphasis is placed on design and construction of technical components and products in regards to customer demands, use, producibility and production methods. Vehicles, household appliances, medical equipment and certain sporting goods are all examples of products made up of complex components. Making complex things simpler The steady increase in the use of computer support makes possible new methods, which are parallel to the entire product development process. With the help of advanced computer tools in design and construction, real and virtual prototypes can be produced much faster, and the time needed for development can be shortened. In addition, a product can be studied and tested at an early stage of product development for its design, usability, durability, safety and producibility. Important aspects of work with the development of components and products include the analysis of function and performance, the choice of materials and the methods of production. This programme gives an understanding of the theory behind and the practical use of the computer based tools needed for these tasks. Industry contacts and guest speakers Some of the courses include project work. Students can, in smaller groups, analyse and make suggestions regarding real-life problems taken straight from the industry. Guest speakers from the field also take part in instruction. A thesis at the end of the programme helps students apply their theoretical knowledge and gain insight as to the research and development within the industry and the university. Extensive knowledge about materials is also acquired. The School of Engineering has well-equipped research labs for materials engineering and computer simulation. Next generation of engineers The School of Engineering, Jönköping University, is a member of the prestigious collaborative between leading engineering schools worldwide - the CDIO Initiative™. The CDIO Initiative is an innovative educational framework to conceive and develop a new vision of engineering education and for producing the next generation of engineers. The programme qualifies you for positions with manufacturers and suppliers that develop and produce components, or as consultants. Courses within the programme NB Preliminary list of courses Year 1 Industrial Product Realisation: Process - Methods - Leadership 9 Credits Materials And Design 6 Credits Non-Linear Finite Element Analysis 9 Credits Elective Course:Advanced CAD 6 Credits Elective Course:Multivariable Calculus 6 Credits The course multivariable calculus is compulsory to students who have not studied this course during their bachelor studies. Computer Programming For Design Automation 6 Credits Functional Materials And Surfaces 6 Credits Integrated Product Development 12 Credits Optimisation Driven Design 6 Credits Year 2 Advanced Materials Technology 6 Credits Computer Supported Engineering Design 9 Credits Industrial Placement 9 Credits Modelling And Simulation Of Casting 6 Credits Final Project Thesis, Master 30 Credits Facts Credits: 120,0 credits Level: Master's Rate of study: Full-time Place of study: Campus-based Language: English Start date: Autumn 2016 Requirements: The applicant must hold the minimum of a bachelor's degree (ie. the equivalent of 180 ECTS credits at an accredited university) with at least 90 credits in mechanical engineering or equivalent. The bachelor's degree should comprise a minimum of 21 ECTS credits in mathematics. Proof of English profiency is required. [-]

MSc in Physics - Materials Science

Lund University
Campus Full time 2 years September 2017 Sweden Lund

Materials are what make up everything around us and their properties are critical to the performance of any system or device where they are used. Almost every aspect of modern society is [+]

Programme overview – Master's in Physics, Materials Science

Materials are what make up everything around us and their properties are critical to the performance of any system or device where they are used. Almost every aspect of modern society is touched by a technology made possible by advances in materials. For example, the internet and mobile phones would not be possible without optical fibres and semiconductors. The study of materials is based on the relationship between the properties of a material (which determine its functionality), its structure, and the way that the material is assembled. Materials science is inherently multidisciplinary and includes subjects from both basic sciences and engineering, and from physics and chemistry.... [-]

International Master in Advanced Clay Science (IMACS)

University of Poitiers
Campus Full time 2 years September 2017 Greece Crete France Poitiers Portugal Aveiro Brazil Porto Alegre + 6 more

IMACS is an integrated Master of Science designed by 4 institutions with a wide range of leadership in clay science. [+]

ENVIRONMENTS- ECONOMIC GEOLOGY-SOIL MANAGEMENT-GEOTECHNICAL ENGINEERING-GEOMATERIAL-NANOMATERIAL IMACS is an integrated Master of Science designed by 4 institutions with a wide range of leadership in clay science : the University of Poitiers (UP) in France (co-ordinator), the University of Aveiro (UA) in Portugal, the Technical University of Crete (TUC) (Chania) in Greece, the Federal University of Rio Grande do Sul (UFRGS) (Porto Alegre) in Brazil. Why clay minerals ? Interest in clays results from their common availability, and their unique physical and chemical properties. No other minerals currently attract so great an interest. In addition to their conventional ancient use as bricks, tiles, ceramics and for paper coating and waste management more recently, clays have found many novel applications. Clay minerals have provided a boost in technology, because they are inexpensive nanomaterials, and as such, they have a huge potential for the synthesis of polymer nanocomposites with superior mechanical and thermal properties. The optimisation of adsorption, colloidal and rheological properties also opens prospects of using clay minerals for medical uses, pollution control, and environmental protection. Clay minerals play a role in economic geology (both as important mineral resource and in energy resource exploration) and soil management. Clays also have many negative effects in geotechnical engineering, manifested in the form of landslides, mudflows, and the deterioration of clay-based construction materials. Clay knowledge is extremely inter- and multidisciplinary as it includes geological, geotechnical, mineralogical, physico-chemical and bio-geochemical aspects. The IMACS is the first master course addressing analytical techniques and their recent developments, clay mineral properties as well as their main application domains. Thus, the complex and versatile nature of clays, as well as their numerous uses and applications, demand that clay engineers have a multidisciplinary education. Objective of the IMACS programme Most existing Masters Courses dealing with clays focus on a single discipline or domain in which Clay Science does not necessarily constitute the main part of the course (Earth Sciences, Civil and Geotechnical Engineering, Materials Science, Environmental and Life Science, Chemistry and Chemical Engineering). However, Clay Science is a multidisciplinary endeavour, combining geology, mineralogy, crystallography, with physics, geotechnology and soil mechanics together with inorganic, organic, colloid chemistry and biochemistry. IMACS (International Master in Advanced Clay Science) is the first multi-disciplinary programme that brings together the widely-distributed knowledge of clays. IMACS is an integrated 2 years master programme delivered by four Universities : the University of Poitiers (France), the Technical University of Crete (Chania - Greece), the University of Aveiro (Portugal) and the Federal University of Rio Grande Do Sul (Porto Alegre – Brazil), and is supported by the French Clay Group (GFA) and AIPEA (International Association for the Study of Clay Minerals) which are associated members of IMACS. This programme approved by the European Commission under a very competitive application scheme as an Erasmus Mundus Joint Master programme in July 2009. During the first year, basic knowledge on clays, recent developments in clays and analytical techniques are provided, followed by a first specialization in Environment, soil and geological systems. After this training period, a master project completes the first year programme. The second year incorporates two specializations 1) Geomaterials and civil engineering, and 2) Advanced clay – nanomaterials, and Healing minerals. The master thesis (4 to 6 months) completes this second year and can be carried out at any of the partner research laboratories which constitute a network of more than 20 labelled research laboratories and numerous private companies. The objective of this Master is to form high level graduates by providing them a wide range of competences with applications in Environment, Earth Sciences, Materials (Geomaterials and Nanomaterials)... The interdisciplinary of the IMACS programme gives access to a large job market on the international level. A great number of research laboratories will be able to welcome for PhD IMACS students. IMACS students will be attractive for any engineer vacant positions requiring clay knowledge (Environment and waste management, Civil Engineering, Soils, Industries linked with mineral and energetic resources, Geo materials, Cement and Ceramic industry, Nano-materials, Cosmetics and medicine...). The teaching language is English. The completion of the curriculum is rewarded by a Master Degree or multiple Master Degrees depending on the student mobility. This Masters Course is open to students holding a BSc (or a degree equivalent to 180 ECTS) or an academic equivalence based on professional experience (validation of acquired experience is required), and a fluent understanding of the English language. Our Strengths: In connection with the industrial demand. Analysis expertise for mineral-geomaterial characterization : X-Ray Diffraction, Infrared Spectroscopy, Scanning and Transmission Electron Microscopy, Thermal Analyses, Tomography… A transdisciplinary approach. Two periods of internship in a partner laboratory (university or industry), conditioned by the grades acquired. An international training course. Documents required The applicant will have to send the following documents: Degree equivalent to BSc A certified (translated in English) copy of the required degree for application in a Masters Course (at least a Bachelor Degree or a nationally recognized degree equivalent to 180 ECTS). If requested, the applicant must prove the international recognition of the mentioned Degree as equivalent to a Bachelor and provide such official recognition translated in English. An academic equivalency could be attributed based on the professional experience of the applicant (validation of acquired experience). In consequence, the programme is not only open to B.Sc. students. Note: The application can be sent even if the B.Sc. is not fully completed at the deadline. This situation shall be explained precisely in the additional explanation letter. The IMACS selection board will decide if the application will be processed or not. Students from the following countries must contact the French Embassy or Consulate in their country as soon as possible: Algeria, Argentina, Benin, Brazil, Burkina Faso, Cameroon, Chile, China, Colombia, Comoros, Congo Brazzaville, Cote d’Ivoire, Gabon, Guinea, India, Indonesia, Iran, Japan, Lebanon, Madagascar, Mali, Marocco, Mauritius, Mexico, Peru, Senegal, Russia, South Korea, Taiwan, Tunisia, Turkey, USA, Vietnam. These students must follow the standard CEF (Centre for Studies in France) online application process on the Campus France website.The Campus France pre-enrolment certificate is compulsory. Language proficiency Excepted for native speaker, a certified fluent level in English is needed as proof of the sufficient knowledge of the English language. Additional proficiency in French, Greek or Portuguese could also be sent. Transcript of records Transcript of records presenting the complete list of courses validated during the Bachelor with the grade obtained in an explained scale (preferentially the ECTS grading scale or the international norm defined by the NCEFEC on a scale from A+ to E). This document must be an official document emanating from the concerned institution with the name and the signature of person in charge of the formation and must be in English or a copy of a certified translation in English must be provided. Recommendations Two letters of reference emanating from two different teachers, researchers and/or professionals, who have directly known the applicant during a teaching or work period, explaining the applicant's suitability with respect to the programme applied for. The evaluation form completed by the person in charge of the last training (Bachelor or Master courses). Letter of motivation Typewritten or word-processed, in English, in which the applicant explains why he/she is applying, how he/she thinks that this application can help him/her and favor his/her personal project, what are his/her professional objectives. This letter must also present the candidate's arguments explaining his/her preference for the training mobility. CV Europass A curriculum vitae (in English) giving additional information useful for the evaluation and perception of the applicant's interest and suitability to the IMACS programme (the applicant's experience, project, training or studies abroad ; work experience, actual and past professional activities, miscellaneous & language skills). The creation of the CV Europass is performed on the EU website. Duly completed and signed Application form. Recent photography Copy of passport (or Id) Note that selected non European students have to possess a passport with an expiration date posterior to the normal date of the end of the course to which he/she is enrolled for (e.g. around 3 years). Additional explanation letter (if necessary) The applicant can explain in a separate letter specific issues, for example : special needs, missing documents... ... [-]

Mechanical Engineering Faculty

Technical University of Varna
Campus Full time October 2017 Bulgaria Varna

Departments - Materials Science and Technology - Mechanical Engineering and Machine Tools Technology - Industrial Design - Automotive Engineering and Technologies - Technical Mechanics - Economics and managment [+]

Masters in Materials Science . Departments Materials Science and Technology The Department of Materials Science and Technology (MST) is a department in the structure of the Technical University of Varna. It was established in the first academic year (1963-64) of the Higher Technical School which had been restored in 1962. The Department of Materials Science and Technology is the leading department for the training in the following majors: Mechanical Engineering and Technology - Bachelor’s Degree, Equipment and Instalations in Chemical, Oil and Gas Industry – Bachelor’s Degree, Mechanical Engineering and Technology – Master’s Degree, Chemical Engineering – Master’s Degree, Technology Machinery and Welding Systems – Master’s Degree, Materials Science and Technology of Mechanical Engineering Materials - Doctoral (PhD) Degree, cipher 02/01/02 Mechanical Engineering and Machine Tools Technology The Mechanical Engineering and Machine Tools Technology Department (MEMTT) was established with the founding of the Technical University of Varna (then the Mechanical and Electrical Engineering Institute-Varna) in 1969. It lays the foundations of the general engineering department at the University. The first Head of the Department was Senior Lecturer Jordan Pashov. At present, the main functions of the MEMTT Department are associated with training students majoring in "Mechanical Engineering and Technologies" and "Computerized Technologies in Mechanical Engineering", as well as providing training courses for other majors such as: Automotive Engineering and Technologies (AET); Mechanical and Precision Engineering (MPE), Chemical Engineering (CE), Automation, Information and Control Engineering (AICE), Ship Machines and Mechanisms (SMM), Shipbuilding (S), Industrial Management (IM) and others. Industrial Design Career. Engineer - designer with specialty "Industrial Design" and "Bachelor" or "Master" degree receive training to perform highly qualified designer, creative, executive and managerial activities in the field of: Industrial design, electrical and electronic industry products, household and industrial products, household appliances design, graphic design, advertising, interior and exterior design, artistic design. In these areas of professional activity "Bachelors" and "Masters" in specialty "Industrial Design" should apply technological, economic, environmentally friendly and ergonomic design approaches and methods. Automotive Engineering and Technologies Automotive Engineering and technology (internal combustion engines and automobiles) has Bachelor and Master’s Degrees and belongs to the professional branch of Engineering and Technology specializing Transport, Shipping and Aviation. AET specialty training has come to existence since 1963. It is a successor of the specialty Internal Combustion Engines in which students were trained up to 1993 in the Department of Internal Combustion Engines. The educational objectives of specialty Transport Engineering in BA and MA degrees are associated with training highly qualified and wide-ranging specialists with higher education having opportunities in almost all fields of modern engineering and transport industry: engine building, automobile construction, operation and maintenance of transport equipment, organization and management of transport, ecology, and research, development and design activities in companies, research institutes and other scientific units. AET Department is part of the Mechanical Engineering Faculty. The department consists of 10 full-time lecturers, 3 guest lecturers, 4 full- time Ph.D, one technical assistant and two mechanics Technical Mechanics The department of Technical mechanics provides fundamental education and training in the fields of: „Theoretical mechanics”, „Mechanics”, „Technical mechanics”, „Mechanics of materials”, “Strength of Materials”„Theory of mechanisms and machines”. Lectures and tutorials are delivered for students of the following major programs: „Machine engineering”, „Electrotechnics, electronics, automatics”, „Transport, marine transport and aviation”, „Energetics and Power engineering” and others. The research and international collaboration are related to the scientific fields as follows: Dynamics of mechanical systems, Continuum mechanics, Robotics and mechatronics, Oscilations theory, Vibrodiagnostics, etc. The department has been established with the foundation of the University. Economics and managment The Department of Economics and Management is part of the Faculty of Marine Sciences and Ecology at the Technical University of Varna together with the departments of Navigation, Management of Transport and Preservation of Waterways’ Purity; Ecology and Environmental Protection and Physics. It is responsible for the training of all university students in the subject areas of economics and management. Since 1991, it has offered training in Industrial Management Bachelor’s and Master’s degree programmes and in 2011 a new Bachelor’s programme in Technological Innovations and Entrepreneurship was launched. [-]

MPhil/PhD in Materials Research and Innovation specialisms

University of Bolton
Campus Full time 2 - 4 years August 2017 United Kingdom Bolton

The MPhil/PhD in Materials Research and Innovation specialisms is particularly suitable for graduates in the materials science, engineering and technology sectors or for scientists and technologists working in these sectors. As a research student you will have access to the University’s resources and research expertise to support your personal development or your work within your organisation... [+]

Materials Research and Innovation specialisms - MPhil / PhD The MPhil/PhD in Materials Research and Innovation specialisms is particularly suitable for graduates in the materials science, engineering and technology sectors or for scientists and technologists working in these sectors. As a research student you will have access to the University’s resources and research expertise to support your personal development or your work within your organisation. In the 2008 Research Assessment Exercise, general engineering research at the University, which includes work carried out by IMRI, was assessed as 'world-leading'. Subject overview IMRI is a multi-disciplinary centre designed to cultivate research and innovation activities in collaboration with industry and other academic institutions. The institute leads the UK, and is internationally known, for its strong applied materials science and engineering applications through the development of new, designer and novel smart and multifunctional materials (fibres, films, foams and particles) at nano and micro levels, as well as associated processing technologies. There are dedicated laboratories in the institute and state-of-the-art materials fabrication, characterisation and testing laboratories, complemented by a suite of materials modelling capabilities. IMRI also regularly carries out consultancy work for national as well as international clients. Staff also serve on technical advisory boards, international scientific panels and hold honorary appointments in overseas universities. IMRI is currently funded by the UK government (EPSRC and Technology Strategy Board), local industry consortia (DIUS), the EU (FP7) and international industry collaborations. Research topics Skills and expertise within IMRI include: medical and healthcare devices; intelligent materials (auxetic, piezoelectric, photovoltaic and electrorheological); smart microsystems (MEMS, self-powered sensors and actuators, surface acoustic waves, solar cells, nanomanipulators, wearables); technical textiles and fire retardancy. Available projects Research projects currently being carried out within IMRI include the following: - Piezoelectric, photovoltaic and solar cell systems for sustainable power regeneration; - Miniaturised biosensors and actuators for early diagnosis of pathogenic and chronic diseases (including, breast cancer, prostate cancer, and vulnerable heart plaque); - Wearable chemical-release self-powered and controlled devices for in vitro treatment (including, wound, antimicrobial, thermophysiological comfort and performance sports); - Functional fibre blends with fire retardant nano particles and encapsulants for protective textiles (including, fire fighting suits, bullet and knife proof police vests and composites); - Synthesis, applications and mechanisms of action of drugs and metallodrugs. [-]

Master of Engineering: Mechanical-Materials

University of Windsor
Campus Full time Part time 3 - 5 semesters September 2017 Canada Windsor + 1 more

In order to graduate with an MEng degree, a student must successfully complete eight graduate-level courses, including five from their area of specialization plus one more engineering course (from any department) and no more than two non-engineering courses. [+]

Masters in Materials Science . MEng Program Information In order to graduate with an MEng degree, a student must successfully complete eight graduate-level courses, including five from their area of specialization plus one more engineering course (from any department) and no more than two non-engineering courses. Alternatively, a student may choose to complete all eight courses within their area of specialisation. Engineering Materials The Vision Statement for the Engineering Materials Graduate Program is: The Engineering Materials Graduate Program recognizes the close relationship between advanced level education and the advancement of knowledge, and is committed to excellence in graduate teaching and research. The Mission statement for the Engineering Materials Graduate Program is to provide an outstanding learning environment for productive graduate research to maintain state-of-the-art research laboratories equipped with the most modern research equipment to offer students with opportunities for a rewarding education to keep self-sustained growth by a high output of student co-authored peer-reviewed research publications, and strengthening collaborative research with other universities and industry to expose students to challenging industrial problems that are studied using a sound scientific methodology and experimental/theoretical research skills to prepare students for careers in teaching and/or research in academia or in industry to train students to acquire autonomy in conducting innovative research The Engineering Materials (EM) graduate program is fully accredited by the Council on Quality Assurance of Ontario Universities (previously, Ontario Council on Graduate Studies (OCGS)). The high caliber of the research activity within the Engineering Materials Program has been a traditional strength of the program. The objective of the program is to continue to provide an outstanding learning environment for productive graduate research. The Engineering Materials faculty members are constantly seeking to attract the best qualified students to the Master’s and Ph.D. programs, and provide them with fundamental research skills on the processing, microstructures, properties, and performance of materials. We make every effort to provide a stimulating and dynamic learning and research environment that fosters the intellectual development of our students. Close relations with industry expose our students to challenging industrial problems that are studied using a sound scientific methodology and experimental/theoretical research skills. As a result, our MASc. graduates become highly regarded professionals in the materials and manufacturing industries, many assuming leadership positions. General The Master of Engineering (MEng) degree offered at the University of Windsor is a course work professional program open to students who satisfy the admission requirements. The MEng Program takes three to five semesters to complete but is structured in such a way that it may be completed in one year by a full-time student. The minimum period of full-time registration for the MEng degree is three semesters and the maximum allowable time is five semesters. For part-time students, the minimum period of registration for the MEng degree is six semesters and the maximum allowable time is fifteen consecutive semesters. Practical work-experience placements (paid and unpaid) may be available for full-time students only, but cannot be guaranteed. Schemes of Study The Master of Engineering may be taken by full-time students or those who wish to study on a part-time basis while remaining in full-time employment external to the University. All applicants for the MEng program are expected to be entirely self-funded and no financial assistance will be provided by the Faculty of Engineering or the University of Windsor. International students are admitted as full-time students only. Full-Time Students will be: required to register for a maximum of three courses per semester, required to register for a minimum of two courses per semester, expected to complete all degree requirements within 5 academic semesters. Part-Time Students will be: required to register for a maximum of admissible two courses per semester, required to complete all degree requirements within 15 academic semesters and should not have more than two semesters of continuous "inactive" status Admission Requirements The Department should approve the application and in addition, MEng applicants shall be recommended for admission by the Faculty of Engineering Coordinator. Official admission to any program of graduate studies is in the form of a "Letter of Acceptance" issued by the Faculty of Graduate Studies. Please note that the following are minimum requirements and do not guarantee admission. Undergraduate degree (BASc / B.Sc. / B.Eng. degree or equivalent*) with at least 73% average over the last two years. International applicants are advised to refer to the specified minimum admission requirements, listed by country, at the Faculty of Engineering’s Professional and Graduate Studies (FEPGS) website and the Faculty of Graduate Studies website. *Candidates with degrees in such areas as Mathematics, Physics and Computer Science will also be considered. Students whose undergraduate degree programs do not provide them with sufficient background in Design, Applied Science and Professional/Technical communications are required to enter a qualifying program of courses at the undergraduate level before admission to candidature for the MEng degree. Students entering and successfully completing the MEng qualifying program may receive an Advanced Certificate in Engineering. A candidate who has not fulfilled the minimum requirement of 73% average may be admitted to the MEng Program as a probationary student** provided that he/she has either: at least 2 years of industrial or engineering experience following graduation or achieved at least 77% overall standing in the Final Year of the graduation. **Such candidates will be required to achieve a grade of at least 73% in the first two MEng courses to be regularized in the MEng Program. The language of instruction for the MEng courses is English. Applicants will be required to provide certification of English language proficiency, if he or she has: not completed three or more years of post-secondary work at a Canadian institution or at an institution at which English was the primary language of instruction***, *** Countries in which English is the Official Language of Instruction, as recognized by the Faculty of Engineering are listed on the Faculty of Engineering’s FEPGS website and the Faculty of Graduate Studies website. English Language proficiency may be met by the language coursework at the secondary school level in the countries listed on the FEPGS website. or not been employed for a similar period of time in a position in which English was the primary language of business. Where applicable a student’s certification of English language proficiency can be demonstrated by a minimum score set by the department. For minimum requirements in other equivalent exams, information is available in the Faculty of Graduate Studies web-site. The Faculty of Engineering and the Faculty of Graduate Studies reserve the right to require further demonstration of English Language proficiency. The Department may consider for admission to its degree programs students from outside Canada who have excellent academic preparation, but who do not meet the usual standards of English language proficiency. Successful completion of the English Language Improvement Program (ELIP) will be considered as a means to gain admission to the Department for such students. Students who do not meet the academic requirements outlined above may be considered for admission to a transitional, probationary or qualifying program depending on their academic background. Students seeking admission to the Department’s MEng programs must also complete the Department’s Graduate Student Information Form and the Faculty of Graduate Studies Admission Reference form. Program Requirements An MEng Degree may be awarded upon successful completion of a total of 8 courses (the MEng has no research component/thesis/work with a faculty supervisor). Of these 8 courses ... 5 to 8 must be from the student's department (major; electrical, electrical-computer, mechanical, materials, industrial, environmental, civil) 0 to 3 may be from another engineering department 0 to 2 may be from a department outside of engineering Co-op work experience is optional [-]

Master in Thermal Engineering and Ceramic Materials

Technical University of Ostrava
Campus Full time 2 years September 2017 Czech Republic Ostrava

Master's degree course in Thermal Engineering and Ceramics follows the bachelor's program of the same name. Qualification subjects, compared to a bachelor's field, put more emphasis on the theoretical basis of the issues discussed, and a thorough elucidation of mutual connections of acquired knowledge. [+]

Study Branch Metallurgical Engineering Branch Profile Master's degree course in Thermal Engineering and Ceramics follows the bachelor's program of the same name. Qualification subjects, compared to a bachelor's field, put more emphasis on the theoretical basis of the issues discussed, and a thorough elucidation of mutual connections of acquired knowledge. A part of the field, besides components in the field of thermal technology and ceramic materials, are courses in metallurgy of steel and non-ferrous metals, steel materials, foundry, material engineering, economics and quality management. The aim of the study is education of experts, who are capable of dealing with the acquisition, use and management of energy, mostly thermal ones, even from non-traditional sources. In parallel, the aim of the study programme is the specialization of experts in the field of ceramic materials that are able to innovate the preparation technology, and decide about the application of materials in different conditions. Graduates are prepared to propose heat-technical equipment, especially in terms of energy savings and material composition with regard to environmental and economic aspects. Key Learning Outcomes Knowledge Graduates can characterize the technology of iron and steel foundry technology and forming technology of ferrous and non-ferrous metals. Control the principles of the technology of iron and the steel foundry technology, and the technology of forming materials. Graduates is acquainted with the nature of combustion processes, thermal processes modeling and equipment balances and optimization of thermal plants by using waste energy, determination of heat loss and the possibilities to minimize them. Graduates have knowledge of the raw material base, manufacturing processes, application, testing and evaluation of refractory and thermal insulating ceramic materials. They know the procedures for the design and implementation structures of refractory ceramics. They are familiar with progressive technology and applications of traditional glass and ceramic materials. Skills Graduates can solve complex tasks in areas related to energy or ceramic materials, including the assessment of the environmental and economic risks arising from those activities. Graduates will be able to Propose progressive thermal units including the choice of heating method, type of heat and linings. Use modern methods of theoretical and experimental research in the field of thermal processes or in the determination of the properties and structure of ceramic systems. Use statistical analysis and numerical simulations and basic principles of managerial economics, when solving a problem. General Competencies Graduates are able to use soft skills, are able to acquire, process and evaluate knowledge gained from the information sources. They are able to create their own views on the problems addressed and then present them, and able to work in a team-oriented environment. Occupational Profiles of Graduates The degree course creates conditions for training specialists in thermal engineering and ceramic materials. Students are acquainted with progressive technologies in the energy, heating, gas and optimization of thermal equipment, construction and refractory ceramics, insulation and composite materials. Modern designed teaching is supported by high-tech laboratory equipment including sophisticated software. Students can develop their skills through participation in research projects and internships at foreign universities. Graduates have the ability of independent decision making, creative and innovative skills and apply the technical and management positions, such as power engineers, technologists, designers of thermal equipment, experts in government, or as employees of scientific research teams. Employability of graduates is given lasting demand from employers throughout the Czech Republic and abroad. Admission Requirements Determined by Dean, may include entrance examination, other formal documents. Graduation Requirement 120 ECTS Credits, Final state examination, Diploma thesis Course Structure Diagram with ECTS Credits List of courses is available at the detailed branch description page 30 ECTS credit per semester. [-]

ME Materials Science & Engineering

UCD College of Engineering and Architecture
Campus Full time 2 years September 2017 Ireland Dublin

The ME in Materials Science and Engineering provides engineers with a specialist education and training in the area of metals, ceramics, polymers and composites for industrial engineering applications from biomedical device manufacture to future energy solutions. [+]

Masters in Materials Science . ME Materials Science & Engineering Graduate Taught (level 9 nfq, credits 120) The ME in Materials Science and Engineering provides engineers with a specialist education and training in the area of metals, ceramics, polymers and composites for industrial engineering applications from biomedical device manufacture to future energy solutions. This Masters is accredited by both Engineers Ireland and the IOM3 (UK). Graduates from this programme will be fully qualified professional engineers, capable of working anywhere in the world at an advanced technical level. Focus on real-world materials used for the manufacture of advanced engineered components and systems such as biomedical implants. Integrated theoretical, conceptual and practical knowledge. Technical research project in collaboration with world leading research groups and researchers. Who should apply? Full Time option suitable for: Domestic(EEA) applicants: Yes International (Non EEA) applicants currently residing outside of the EEA Region. Yes A bachelors degree with a minimum upper second class honours (NFQ level 8) or international equivalence in a relevant Engineering programme. Engineering or science graduates from any cognate discipline who are seeking to specialise in materials science and engineering at postgraduate level Course Description Materials Scientists and Engineers are at the centre of virtually every area of technology from optoelectronics to space materials and from automotive and aeromotive manufacturing to biomedical devices. Graduates from this programme will be fully qualified professional engineers, capable of working anywhere in the world at an advanced technical level or as a professional engineering manager. Graduates will also have specialist training in underlying scientific fundamentals and practical materials handling and analysis techniques that will make them attractive to either potential employers or equip them for further study at advanced postgraduate level such as PhD studies in Ireland or across the world. Career Opportunities If you are a graduate of the ME Materials Science & Engineering programme you can look forward to limitless employment opportunities in a substantive array of industries. Most companies worldwide employ materials professionals. A number of UCD materials graduates have been employed by companies such as General Electric or Rolls Royce (Aerospace), Astrium (Space), Stryker, Boston Scientific (Biomedical) or Siemens (Energy). Fees, Funding and Scholarships ME Materials Science & Engineering (T275) Full Time EU Year 1 - € 7490 EU Year 2** - € 7490 nonEU Year 1 - € 23800 ***Fees are subject to change Tuition fee information is available on the UCD Fees website. Please note that UCD offers a number of graduate scholarships for full-time, self-funding international students, holding an offer of a place on a UCD graduate degree programme. For further information please see International Scholarships. Student Internships The Professional Work Experience (PWE) module is incorporated into the two-year Masters of Engineering Programme and is designed to integrate a student’s academic and career interests with paid practical work experience for a 6-8 month period. The module provides students with the perfect opportunity to gain increased experience and understanding of their chosen field, assess where their strengths and weaknesses lie and maximise their knowledge of the available career possibilities. The practical skills acquired during this placement will give graduates a competitive advantage when applying for positions upon graduation. Entry Requirements A bachelors degree with a minimum upper second class honours (NFQ level 8) or international equivalence in a relevant Engineering programme. Applicants whose first language is not English must also demonstrate English language proficiency of IELTS 6.5 (no band less than 6.0 in each element), or equivalent. Testimonial Graduate Profile Gavin McGlynn Graduate I chose this course as I was interested in working with the smallest building blocks in engineering. Once in the course I became fascinated by CSI-like investigations used to understand a material and how to improve its properties. My work placement brought me to the UK to work with polycrystalline diamond composites and was so fascinating that I did my research project with the company.Life in UCD also has the potential to be very rich. As well as studying, I had the chance to join and run many clubs and societies, experienced other cultures, picked up new sports and made friends from all areas of this diverse college. The course itself covered a broad range of processes and applications but was also flexible and allowed me to delve deeper into areas of interest to me such as medical devices, composites and nano-materials. This flexibility allowed me to work with people from different backgrounds which gave me new perspectives on how to tackle problems. The skills I have gained during this degree have given me a great grounding, allowing me to work in almost any field. *Courses will remain open until such time as all places have been filled, therefore early application is advised [-]

Advanced Materials Science & Engineering (AMASE) Master

AMASE Master
Campus Full time 2 years October 2017 Germany Saarbrücken Spain Barcelona France Nancy Sweden Luleå + 6 more

The AMASE Masters course has been successfully implemented over the last five years with funding from the Erasmus Mundus Programme. [+]

The AMASE Masters course has been successfully implemented over the last five years with funding from the Erasmus Mundus Programme. Scholarships are available for students from all over the world and are between 500 EUR and 1000 EUR per month. The course has demonstrated high quality throughout. In order to ensure the programme's continuity - the "non-selected status" may prove temporary and only last until the next call - the consortium delivering this Joint Masters course has been awarded by the European Commission/EACEA an Erasmus Mundus Brand Name (EMBN) by which it commits itself to maintain the requirements and level of excellence expected from an Erasmus Mundus Masters Course. The common Advanced Materials Science and Engineering (AMASE) Master Programme is offered by four European Universities. ... [-]

Master of Engineering Chemical and Biomolecular Engineering

University of Maryland, A. James Clark School of Engineering
Campus Full time Part time 1 - 5 years September 2017 USA College Park + 1 more

The Graduate Program in Chemical and Biomolecular Engineering offers research and education opportunities leading to the Master of Science and Doctor of Philosophy degrees. [+]

Masters in Materials Science . The Graduate Program in Chemical and Biomolecular Engineering offers research and education opportunities leading to the Master of Science and Doctor of Philosophy degrees. The Department of Chemical and Biomolecular Engineering is well-equipped for graduate research in aerosol science and engineering, biochemical engineering, computational modeling, fluid mechanics and mixing, fuel cell technology, metabolic engineering and systems biology, nanoparticle technology, polymer processing and characterization, polymer reaction engineering, process control, thermodynamics and transport phenomena, and systems research. The Department maintains a distributed computing network consisting of research laboratories and a PC laboratory. Major research facilities including electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and NMR are coordinated through a variety of laboratories. General Requirements Before graduate courses in Chemical Engineering are attempted, the candidate must fulfill certain minimal course prerequisites either by previous experience or by taking selected undergraduate courses. These minimal prerequisites are descibed in the GPA and prerequisite policy page. Some of these prerequisites may be fulfilled by concurrent registration if necessary. No courses numbered below 400 may count towards the minimal 30 credits required for the degree. A maximum of 6 credits of 400 level courses may count towards the degree subject to prior approval by the Graduate Director. Graduate courses with an EMPM designation cannot be used to satisfy the minimum 30 hours without prior permission of the Graduate Director. All graduate students (full and part-time, on and off campus) are expected to attend all research seminars, i.e., those not specifically directed to 1st year students. Students that fail to regularly attend research seminars will receive a notice from the director of graduate studies; extreme cases can be considered insufficient progress towards degree. Exceptions to this requirement will be made on a case-by-case basis by the graduate program committee; such exceptions include off-campus students that demonstrate regular participation in an on-campus seminar series that takes place at a more convenient time, or an off-campus technical seminar series. Students granted this exception should turn in a list of seminars attended to the director of graduate students before the end of each spring and fall semester. The Department of Chemical and Biomolecular Enginering's overall expectations for all students enrolled in its graduate program are that they will: make significant scholarly contributions to the field of chemical and biomolecular engineering, which is primarily measured by publications in peer-reviewed journals; and demonstrate an ability to communicate research findings to an audience of their peers in the field of chemical and biomolecular engineering, which is primarily measured by presentations at conferences. These publications and presentations must be documented on the final page(s) of each student's written thesis. For details, see "M.S. Thesis," below. GPA The Graduate School requires students to maintain a 3.0 GPA in all courses for credit since enrollement. The Department of Chemical and Biomolecular Engineering further requires that students attain at least a 3.0 GPA in tthe four required graduate core courses–ENCH 610, 620, 630 and 640–where this GPA is computed using the letter+/- system. Typical Plans of Study In principle, a candidate fulfilling all of the General Course requirements can complete the requirements for the Master of Science degree in one year. However, it is unusual for students to complete their program in less than 3 semesters. For candidates having a previous degree in a non-Chemical Engineering technical area, a 2 to 2.5 year program is usually necessary. An example plan of study is given in the M.S. Course Requirement Advising Form (.docx). Individual plans of study will be developed upon request by the Departmental Graduate Director. [-]

Master in Quantum Physics for Advanced Materials Engineering

National University of Science and Technology MISiS
Campus Full time 2 years October 2017 Russia Moscow

Master's program "Quantum Physics for Advanced Materials Engineering" is devoted to the study of new physical phenomena in nanostructured materials and quantum devices created or discovered during the last 20-30 years of research for components for quantum electronics. [+]

The Master's program Quantum Physics for Advanced Materials Engineering is devoted to the study of new physical phenomena discovered in nanostructured materials and quantum devices created last 20-30 years in the search for components for quantum electronics. At the same time the program addresses the basic physical principles of electronic systems and devices of quantum electronics, as well as some important manufacturing techniques and measurements of physical and chemical characteristics of quantum-sized structures and materials. The program is designed for students trained in the amount of university courses in general physics and introduction to theoretical physics for a Bachelors, which includes the courses: theoretical mechanics and the theory of elasticity,electrodynamics, quantum mechanics and statistical physics. The program does not involve a starting special training of students in the condensed matter physics,, because it includes basic courses in: 1) modern quantum physics of solids, 2) electronic theory of metals, 3) technology and materials of quantum electronics, 4) spectroscopic methods of materials characterization. The medium of instruction for this program is English. The urgency and necessity A distinctive feature of this Master’s program is to focus on the study of new physical phenomena in quantum-sized materials and devices, all of which are overlooked in traditional courses of solid state physics. These objects of study appeared in the last 20-30 years due to development of tools and methods of measurement and conversion of properties of materials in the nanometer range of distances. Although the physical phenomena and processes observed in the new materials and nanostructures are described in the framework of well-established fundamental concepts of quantum and classical physics, they could not become an object of study of traditional training courses on condensed matter physics, which were created in the middle of the twentieth century, simply because most of these facilities and adequate measurement tools for their research were not yet developed. The circle of new physical phenomena studied in special courses of this master's program includes the effects of size quantization in low-dimensional structures, in particular: the quantum Hall effect, quantum charge fluctuations, Coulomb blockade and Landauer quantum conductance of the contacts of atomic size, the Wigner-Dyson statistics of electronic energy levels in the nanoclusters, the Rabi oscillations in two-level systems, the spectra of quantum dots, wells and wires in a magnetic field, phonons in fractal structures, Einstein modes in thermoelectric semiconductor materials with complex crystal cell, etc. Developing skills This master's program enables students to orient themselves in the modern scientific and applied research and development of quantum-sized materials and devices through the acquisition of skills in both theoretical calculations in the field of quantum physics of nanosystems as well as experimental measurements using modern equipment in the field of electron and scanning probe microscopy and spectroscopy. Basic Courses 1) Modern quantum physics of solids (1 st semester) introduces into: different aspects of modern solid state physics, including phenomena in the objects of atomic size, including those considered in the following topics: quantum Hall effect, graphene and carbon nanotubes, Landauer quantum conductance of atomic size contacts, quantum magnets (spin chains), magnetism of frustrated systems, magnetic semiconductors, including silicon doped with manganese, colossal magnetoresistance, quantum phase transitions, the low-energy excitations in disordered media and fractal structures, granular conductors, metals with heavy fermions, the Kondo semiconductors, quasicrystals and structurally complex alloys; 2) Electron theory of metals (1 st semester) introduces into: basic methods and results of the electron theory of metals, that are in the focus of the current research of quantum properties of solids and use the concept of Landau quasi-particles and Fermi-liquid theory to describe the properties of normal metals; description of phenomena in superconductors, based on the concept of spontaneous symmetry breaking and Bose-condensation of Cooper pairs in the framework of the theory of Bardeen, Cooper and Schrieffer, with application of the equations of the Ginzburg and Landau; foundations of the Green's functions technique and its applications for prediction and interpretation of experiments involving the scattering of photons, neutrons, muons and measuring the current-voltage characteristics of the tunneling microcontacts; 3) Technologies and Materials of Quantum Electronics (2 nd semester) introduces into: physical properties of basic semiconductor materials and methods of nanotechnology in relation to the creation of the base elements of nanoelectronics, optoelectronics, quantum devices, in particular, including the study of changes in the electrical and optical properties of bulk materials when they are produced in the form of low-dimensional structures (quantum wells, wires and dots) due to the effects of quantum-size effect; with the emphasis on C, Si, solid solutions GeXSi1 -X , compounds and solid solutions А2В6 and A3B5; also considered are basic technologies of manufacturing of quantum-sized structures: liquid phase epitaxy, molecular beam epitaxy, vapor phase epitaxy of organometallic compounds, nanolithography, self-organization of quantum wires and dots; outline of the use of low-dimensional structures in the devices of micro-and nanoelectronics; also considered are emitting diodes and lasers for the infrared, visible and ultraviolet spectral regions, photodetectors and transistors; 4) Spectroscopic methods for analysis of materials (1 st semester) introduces into: the fundamentals of modern spectroscopic methods of analysis of materials, such as Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XRF), secondary ion mass spectrometry (SIMS), transmission electron microscopy (TEM), scanning ion microscopy (SIM), i.e. methods that allow us to investigate elemental, chemical composition, atomic structure, structural perfection of the surfaces of solids, surface layers, interphase boundaries and nanostructures. Special Courses familiarize students with basic modern areas of theoretical physics research in nanosystems, in including low-dimensional systems. 1) Quantum electronic properties of nanosystems (3rd semester) introduces into: theory of electronic quantum phenomena in nanosystems: random Hamiltonian matrices of Wigner-Dyson and thermodynamics of nanoclusters, Peierls transitions in quasi one-dimensional conductors, transitions of Ising and Berezinskii Kosterlitz-Thouless in two-dimensional lattice systems, the theory of spin fluctuations in one-dimensional Ising chain, the theory of Landauer quantum conductance of quantum point contact; 2) Physics of liquid-crystal membranes (3rd semester) introduces into: physics of liquid crystals and its applications to the theory of lipid membranes, in particular, into fundamentals of elasticity of liquid crystals adapted to describe bilayer membranes, thermodynamics and kinetics of phase transitions in multicomponent systems, Gibbs phase diagrams and various two-dimensional lattice models; basic theory of wetting, adapted to biomembranes, mechanisms of protein-lipid interactions and conditions of formation of macroscopic wetting films, the dependence of the rate of cellular processes on the energy of forming membrane structures using exo-and endocytosis as example; 3) Physics of Low-Dimensional Systems (2 nd semester) introduces into: low-dimensional systems - quasi-two-dimensional quantum wells, one-dimensional quantum wires and quasi zero-dimensional quantum dots, in particular, with the quantum-mechanical phenomena in such systems and the influence of external electric and magnetic fields, methods of computer modeling and calculations from first principles of parameters of the low-dimensional systems: resonant frequencies, the energy spectra and wave functions of electronic and excitonic systems with carriers incoupled quantum wells and coupled quantum dots; evolution of the spectrum and restructuring of the spin states of molecules consisting of horizontally and vertically coupled quantum dots; 4) Experimental Methods in the physics of low-dimensional systems (2-nd semester) introduces into: methods of experimental studies of transport and magnetic properties of solids, including: galvanomagnetic effects (magnetoresistance, Hall effect, de Haas-van Alphen effect, Shubnikov - de Haas effect), electrodynamics of metals, nuclear magnetic resonance, nuclear gamma resonance; equipment and experimental techniques of measurement of weak signals in the presence of noise, resistance measurement, thermometery, application of high magnetic fields; methods of choice of appropriate measurement technology for research, experimental design, design scheme of the experimental setup, processing and interpretation of the results of the experiment, the course also teaches methods of analysis of surfaces of solids, including: classification of methods of analysis of materials surface, ion-beam probe (inverse Rutherford scattering, channeling, mass spectroscopy of secondary ions), electron-beam probe (characteristic loss spectroscopy, secondary electron emission, Auger spectroscopy), electromagnetic radiation probe, tunneling microscopy; 5) Phase diagrams of multicomponent systems (3rd semester) introduces into: analysis of phase diagrams of multicomponent systems, including applied to real materials and processes based on software packet calculation methods “Thermo-Calc”, as well as the original techniques focused on the use of widespread program EXCEL; methods of solution of the following tasks: analysis of phase composition of multicomponent materials at different temperatures; graphical estimate and calculation of the liquidus, solidus, and other critical temperatures of phase transformations; construction of insulated and polythermal cuts of triple, quadruple and five fingers systems using both graphical and computational methods; calculation of the mass and volume fractions of phases in multicomponent systems, a critical analysis of information on phase diagrams and finding errors in the prediction of phase equilibria in unexplored multicomponent systems. 6) Electronic properties of quantum confined semiconductor heterostructures (2–nd semester) introduces into: physics of low dimensional quantum confined heterostructures, that are the structures where the carrier motion is restricted in one or more directions at the distances of the order of de Broglie wavelength; electron transport and optical transitions in low dimensional electronic systems, and the difference between the electronic properties of low dimensional structures and those of bulk semiconductors; applications of quantum dots and wells in photovoltaics and laser techniques. 7) Introduction to path integral methods in condensed matter physics (2–nd semester)motivation and contents: The idea of the course is to get students acquainted with path integral approach to problems of contemporary condensed matter physics. The aim is to give students firm command of this approach via carefully selected examples and problems. The course contains mathematical digression into complex calculus, the basics of second quantization, field quantization, path integral description of quantum statistical mechanics, finite temperature perturbation theory, theory of linear response, basics of renormalization group analysis and effective field theory. The final project consists of the theoretical description of single electron transistor via effective Ambegaokar-Eckern-Schoen action. Courses in experimental research methods help students to get an idea of materials for prospective elementary base of quantum electronics, as well as on the possibilities of measurement methods: 1) spectroscopy, 2) tunneling microscopy, 3) scanning ion microscopy, 4) the accuracy, sensitivity, locality, and applicability of different measurement methods for the study of nanomaterials. Focus of lecture courses are new materials and modern quantum devices. List of new materials studied in the course of the program includes: 1) graphene and carbon nanotubes 2) quantum magnets - atomic spin chain 3) magnetic semiconductors - silicon doped with manganese; 4) semiconductor materials based on solid solutions of germanium in silicon 5) disordered media and fractal structures – aerogels, granular conductors, 6) heavy fermionic metals, the Kondo semiconductors, 7) quasicrystals and structurally complex thermionic materials based on bismuth telluride. Studied electronic devices and appliances include: 1) tunnel contact of atomic size, 2) magnetic switches on the basis of manganites with colossal magnetoresistance 3) Josephson junctions 4) emitting diodes and lasers for the infrared, visible and ultraviolet, photodetectors, transistors. Studied manufacturing technologies of quantum-sized materials: 1) liquid-phase epitaxy, 2) molecular-beam epitaxy, 3) vapor-phase epitaxy from organometallic compounds, 4) nanolithography, 5) self-organization of quantum wires and dots. Admission Admission to International Master’s Programs at MISiS is open to both Russian and international students. Given that all classes will be conducted in English, we recommend that nonnative speakers of English achieve a TOEFL score of at least 525 (paper based) or 200 (computer based) prior to admission. To apply for a two-year Master’s program at MISiS, the applicant must hold a Bachelor’s degree in a related field. Upon the completion of the program of study at MISiS, the applicant will receive a Russian State diploma and a European Diploma Supplement. Admission Deadline The deadline to submit the application for Fall 2016 is 15 March 2016. [-]

Master in Engineering Materials Science

KTH Royal Institute of Technology
Campus Full time September 2017 Sweden Stockholm

The Master’s programme in Engineering Materials Science is characterised by a cross-functional approach – focusing on both the understanding and study of current materials, processes and applications, as well as the development of new materials and [+]

Master in Engineering Materials ScienceThe Master’s programme in Engineering Materials Science is characterised by a cross-functional approach – focusing on both the understanding and study of current materials, processes and applications, as well as the development of new materials and processes.Programme outlineThe programme is open to students with materials backgrounds and has three different tracks, each focusing on different complimentary aspects of material and process development, while incorporating each students’ individual experience in the area. This makes the programme both comprehensive in the fundementals of the field, and tailored to meet personal academic and career goals.Track 1 - Industrial Materials (IMTA)Materials such as steel, lightweight metals and semi-conductors have made development possible for many years and will continue to do so in the future. Through the choice of courses, the student may decide to specialise in Materials Design, Process Science or, preferably, a combination of both areas. This track is only for students with a solid background in Materials Science and Engineering and Metallurgy.Track 2 - Materials and Process Design (MDNA)Materials and Process Design has, like Industrial Materials, a strong focus on materials and processes, properties and design. The content of the courses offered within this specialisation will cover all of the different areas of Engineering Materials Science and Metallurgy during the first term. This track is only for students with a background in Mechanical Engineering, Chemical Science and Engineering or Engineering Physics.Track 3 - Materials Processing (MPTA)Materials Processing has a strong focus on materials in general and provides inter-disciplinary courses within materials processing. The content of the courses offered within this specialisation will cover the areas of casting, plastic forming, modelling and simulation, and mechanical metallurgy. This track is open for students with different materials backgrounds, preferably Mechanical Engineering.Degree projectThe degree project is one semester of full-time work and is undertaken during the second year. Typically, the preceding summer is used to prepare for and specify the thesis project. The project is then carried out in the area defined by the courses taken during the first year of the programme and may be conducted in industry, at a KTH department or in another technical university or research institute anywhere in the world.Career prospectsStudents graduating with a Master of Science degree specialising in Engineering Materials Science are in great demand throughout the world. The education also provides a solid scientific foundation for further research studies at KTH or abroad after graduating.... [-]