Master's Degree in Renewable Energy in Midi-Pyrenees in France

Search Masters Programs in Renewable Energy 2017 in Midi-Pyrenees in France

Renewable Energy

The benefits of a Masters extend beyond improving your earning potential. They can provide you with personal and professional skills to accelerate your development. They are also an opportunity to differentiate yourself from your peers, many of whom will have similar A-level and undergraduate qualifications.

Renewable energy education is available in a variety of formats, from courses that last a few days to full programs that last a few years. Many perspectives on the renewable energy field such as technology, business management, and science can be explored.

France, officially the French Republic, is a unitary semi-presidential republic located mostly in Western Europe, with several overseas regions and territories.

Request Information Master's Degrees in Renewable Energy in Midi-Pyrenees in France 2017

Read More

Master Biomass and Waste for Energy and Materials (BiWEM)

Ecole Des Mines D’Albi-Carmaux | EMAC
Campus Full time 2 years September 2017 France Albi

The objectives of BiWEM are to provide students with a sound theoretical and practical specialised knowledge in the field of biomass and waste processing. Students in the program will acquire the ability to design economically viable biological or thermochemical processes for the conversion of biomass and waste into new materials or energy carriers, within a sustainable development frame. [+]

Masters in Renewable Energy in Midi-Pyrenees in France. ACCREDITATION Master accredited by the French Ministry of Higher Education and Research. Opening in September 2016. KEY WORDS Renewable feedstocks, eco-technology, processing, design, assessment, environmental burdens, green business, social responsability SCHOOL PROPOSING THE MASTER Mines Albi, in co-accreditation with Institut Mines Telecom, Paris, France LANGUAGE OF TEACHING English INCENTIVE Given the current context of natural resource depletion, environmental and public health crises related to air and water pollution, pressures on energy supplies, we are facing a paradigm shift. The linear model “take, make, consume and dispose” is progressively being replaced by a 4R approach “repair, refurbish, reuse and recycle”. The circular economy is becoming day after day a new development strategy for nations. Better eco-design, waste prevention and reuse bring significant net savings for businesses, while also reducing environmental harm and bringing new job opportunities. Turning biomass and waste into a valuable resource is at the heart of this strategy. Generating new materials, processes and markets requires global high-level training, including science, technology, regulatory knowledge, management and economics. All these innovative systems will emerge at the crossroads of process engineering, chemistry, fluid mechanics, thermal science, environmental sciences and economics as well as social sciences and humanities. BiWEM was created to satisfy the growing needs of this dynamic sector. COURSE AIMS The objectives of BiWEM are to provide students with a sound theoretical and practical specialised knowledge in the field of biomass and waste processing. Students in the program will acquire the ability to design economically viable biological or thermochemical processes for the conversion of biomass and waste into new materials or energy carriers, within a sustainable development frame. Consequently, BiWEM focus on chemical engineering but also includes courses on economics, international regulations and on certain areas of the social sciences and humanities. PROGRAM This is a full-time program of 2 years divided into four semesters: lectures, tutorials and practical work over the 3 academic semesters followed by an internship of one semester in a company or in a public research lab. The program is composed of four teaching blocks, including an integrated team project over the three academic semesters under the supervision of expert practitioners. Overall, 25% of the classes are devoted to practice. 1. Environmental and social economic issues (25 ECTS) Ethics, management and economics of the environment Corporate social responsibility Ecotechnologies and innovation Global environmental business 2. Fundamental science and generic engineering tools (21 ECTS) Fundamentals of transport phenomena, applied chemistry, biochemistry, metabolic pathways Generic numerical and experimental methods for process optimization and engineering Process modeling, integration and assessment 3. Fundamentals for renewable resource conversion (22 ECTS) Resource availability, collection and sustainability Biomass and waste pre-processing Fundamentals of biological and thermochemical reactor design Gas and solid coproducts post-processing 4. Putting theoretical concepts into practice (22 ECTS) Industrial visits Industrially-relevant project work, sponsored by industrial partners: Environmental-friendly design of an economically viable processing route for turning waste or biomass into energy, chemical or useful material. CALENDAR One intake per year (mid-September). - Year 1: Two academic semesters at Mines Albi. - Year 2: One academic semester at Mines Albi + a 6-month MSc thesis, in France or abroad. LOCATION The 3 academic semesters will be held on the Mines Albi campus. Albi is located 70 km from Toulouse, the capital city of the French southwestern Midi Pyrénées Region, which is ranked among the 12 most dynamic European Regions. The city of Albi is part of the UNESCO’s World Heritage. ADMISSIONS REQUIREMENTS Participants must hold a Bachelor of Science or Engineering degree. The program is a complete education in chemical engineering therefore admissions are open to candidates from various fields of study (preferentially Chem Eng but also Mech Eng, Civil Eng, Clean Tech...) with little or no professional experience. Participants with some industrial experience are also welcome. LANGUAGE REQUIREMENTS English Mother tongue or Bachelor degree taught in English or English language qualification such as TOEFL IBT 80, IELTS 6.0, TOEIC 750, Cambridge CAE. French No prerequisite in French, but TEF II or equivalent may be required to obtain a visa. APPLYING All applications should be made on-line: Applications are open from January to July each year. HIGHLIGHTS Program boosted by the research department RAPSODEE CNRS UMR 5302 having an outstanding international recognition. This centre has been granted by the French government as a research centre of excellence in Science for Energy Conversion (under Labex and Equipex funding schemes). This label is given to only 10% of research labs in France. RAPSODEE has also developed and hosts the Springer peer-reviewed journal “Waste and Biomass Valorization” and the WasteEng Conferences Series. Strong interaction with industry through conferences, practices and visits. RAPSODEE works closely with more than 50 companies (€ 2 Million income in corporate research/year), including world leaders in the field of Energy and Environment. Good grounding in a core set of engineering competencies. In-depth knowledge of the key cross-cutting methods associated with process design and integration. Access to impressive and up-to-date on-site pilot-scale facilities. Opportunity to undertake an industrially-relevant project, sponsored by companies, and to develop a sense of decision-making in the field of Waste and Biomass Valorization to face tomorrow’s challenges. 6-month MSc thesis in industry or in a public research lab. Opportunity to build up a well-established international network of contacts. Master taught entirely in English and in small group. Free French language courses. A quality charter to welcome international students to the Mines Albi international campus. SKILLS ACQUIRED Ability to use experimental and numerical methods for process conceptual and detailed design, optimisation and assessment. Ability to think green, preferably with a circular economy mind-set. Ability to understand, analyse and manage complex systems. Ability to recommend strategies to meet business and ecological goals. Ability to undertake socially responsible innovative industrial projects. Ability to work well with others, across culture and disciplines. Ability to present convincingly and argue a case in front of an audience, write reports, publications and short communications. TYPICAL JOBS R&D Engineer Junior Project Engineer Process Engineer Design Engineer Exploitation engineer Environmental consultant [-]